Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons resulting in a catastrophic loss of motor function. Current therapies are severely limited owing to a poor mechanistic understanding of the pathobiology. Mutations in a large number of genes have now been linked to ALS, including SOD1, TARDBP (TDP-43), FUS and C9orf72. Functional analyses of these genes and their pathogenic mutations have provided great insights into the underlying disease mechanisms. Defective axonal transport is hypothesized to be a key factor in the selective vulnerability of motor nerves due to their extraordinary length and evidence that ALS occurs as a distal axonopathy. Axonal transport is seen as an early pathogenic event that precedes cell loss and clinical symptoms and so represents an upstream mechanism for therapeutic targeting. Studies have begun to describe the impact of a few pathogenic mutations on axonal transport but a broad survey across a range of models and cargos is warranted. Here, we assessed the axonal transport of different cargos in multiple Drosophila models of ALS. We found that axonal transport defects are common across all models tested, although they often showed a differential effect between mitochondria and vesicle cargos. Motor deficits were also common across the models and generally worsened with age, though surprisingly there was not a clear correlation between the severity of axonal transport defects and motor ability. These results further support defects in axonal transport as a common factor in models of ALS that may contribute to the pathogenic process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181624PMC
http://dx.doi.org/10.1093/hmg/ddw105DOI Listing

Publication Analysis

Top Keywords

axonal transport
32
transport defects
12
models als
12
axonal
8
defects common
8
drosophila models
8
pathogenic mutations
8
common models
8
transport
7
models
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!