The introduction of alien plants can influence biodiversity and ecosystems. However, its consequences for soil microbial communities remain poorly understood. We addressed the impact of alien ectomycorrhizal (EcM) pines on local arbuscular mycorrhizal (AM) fungal communities in two regions with contrasting biogeographic histories: in South Africa, where no native EcM plant species are present; and in Argentina, where EcM trees occur naturally. The effect of alien pines on AM fungal communities differed between these regions. In South Africa, plantations of alien EcM pines exhibited lower AM fungal richness and significantly altered community composition, compared with native fynbos. In Argentina, the richness and composition of local AM fungal communities were similar in plantations of alien EcM pines and native forest. However, the presence of alien pines resulted in slight changes to the phylogenetic structure of root AM fungal communities in both regions. In pine clearcut areas in South Africa, the richness and composition of AM fungal communities were intermediate between the native fynbos and the alien pine plantation, which is consistent with natural regeneration of former AM fungal communities following pine removal. We conclude that the response of local AM fungal communities to alien EcM pines differs between biogeographic regions with different histories of species coexistence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiw073 | DOI Listing |
Annu Rev Pathol
January 2025
Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
The mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers.
View Article and Find Full Text PDFThorac Cancer
January 2025
Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
Background: The mycobiome in the tumor microenvironment of non-smokers with early-stage lung adenocarcinoma (ES-LUAD) has been minimally investigated.
Methods: In this study, we conducted ultra-deep metagenomic and transcriptomic sequencing on 128 samples collected from 46 nonsmoking ES-LUAD patients and 41 healthy controls (HC), aiming to characterize the tumor-resident mycobiome and its interactions with the host.
Results: The results revealed that ES-LUAD patients exhibited fungal dysbiosis characterized by reduced species diversity and significant imbalances in specific fungal abundances.
Microb Ecol
January 2025
Conservation Genomics Research Unit and Animal, Environmental and Antique DNA Platform, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats.
View Article and Find Full Text PDFmBio
January 2025
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi, China.
Soil microbial diversity and community life strategies are crucial for nutrient cycling during vegetation restoration. Although the changes in topsoil microbial communities during restoration have been extensively studied, the structure, life strategies, and function of microbial communities in the subsoil remain poorly understood, especially regarding their role in nutrient cycling during vegetation restoration. In this study, we conducted a comprehensive investigation of the changes in the soil microbial community, assembly process, life strategies, and nutrient cycling functional genes in soil profiles (0-100 cm) across a 36 year chronosequence (5, 15, 28, and 36 years) of fenced grassland and one grazing grassland on the Loess Plateau of China.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!