The role of the equatorial ligands for the redox behavior, mode of cellular accumulation and cytotoxicity of platinum(IV) prodrugs.

J Inorg Biochem

Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria.

Published: July 2016

The current study aims to elucidate the possible reasons for the significantly different pharmacological behavior of platinum(IV) complexes with cisplatin-, carboplatin- or nedaplatin-like cores and how this difference can be related to their main physicochemical properties. Chlorido-containing complexes are reduced fast (within hours) by ascorbate and are able to unwind plasmid DNA in the presence of ascorbate, while their tri- and tetracarboxylato analogs are generally inert under the same conditions. Comparison of the lipophilicity, cellular accumulation and cytotoxicity of the investigated platinum compounds revealed the necessity to define new structure-property/activity relationships (SPRs and SARs). The higher activity and improved accumulation of platinum(IV) complexes bearing Cl(-) in equatorial position cannot only be attributed to passive diffusion facilitated by their lipophilicity. Therefore, further platinum accumulation experiments under conditions where active/facilitated transport mechanisms are suppressed were performed. Under hypothermic conditions (4°C), accumulation of dichloridoplatinum(IV) complexes is reduced down to 10% of the amount determined at 37°C. These findings suggest the involvement of active and/or facilitated transport in cellular uptake of platinum(IV) complexes with a cisplatin-like core. Studies with ATP depletion mediated by oligomycin and low glucose partially confirmed these observations, but their feasibility was severely limited in the adherent cell culture setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2016.03.005DOI Listing

Publication Analysis

Top Keywords

platinumiv complexes
12
cellular accumulation
8
accumulation cytotoxicity
8
complexes reduced
8
accumulation
5
complexes
5
role equatorial
4
equatorial ligands
4
ligands redox
4
redox behavior
4

Similar Publications

Targeted Radionuclide Therapy Activates Prodrugs for Treating Metastasis.

ACS Cent Sci

December 2024

Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Over 90% of cancer patients succumb to metastasis, yet conventional frontline therapy struggles to halt the progression of metastatic tumors. Targeted radionuclide therapy, which delivers radiation precisely to tumor sites, shows promise for treating metastasis. The rational design of a prodrug activation platform using radionuclides would be an ideal approach to synergize chemotherapy with targeted radionuclide therapy, yet it has not been established.

View Article and Find Full Text PDF

Dicationic, -symmetrical, tris-chelate Pt(IV) complexes of general formula [Pt(trz)(N∧N)](OTf), bearing two cyclometalated 4-butyl-3-methyl-1-phenyl-1-1,2,3-triazol-5-ylidene (trz) ligands and one aromatic diimine [N∧N = 2,2'-bipyridine (bpy, ), 4,4'-di--butyl-2,2'-bipyridine (dbbpy, ), 4,4'-dimethoxi-2,2'-bipyridine (dMeO-bpy, ), 1,10-phenanthroline (phen, ), 4,7-diphenyl-1,10-phenanthroline (bphen, ), dipyrido[3,2-:2',3'-]phenazine (dppz, ), or 2,3-diphenylpyrazino[2,3-][1,10]phenanthroline (dpprzphen, )] are obtained through chloride abstraction from [PtCl(trz)] () using AgOTf in the presence of the corresponding diimine. Complexes show long-lived phosphorescence from LC excited states involving the diimine ligand, with quantum yields that reach 0.18 in solution and 0.

View Article and Find Full Text PDF

Transition metal complex-loaded nanosystems (TMCNs) represent a cutting-edge platform for stimuli (light, ultrasound)-responsive cancer therapies. These nanosystems, incorporating metals such as manganese(II), zinc(II), ruthenium(II), rhenium(I), iridium(III), and platinum(IV), significantly enhance the efficacy of light-activated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), as well as ultrasound-activated treatments like sonodynamic therapy (SDT). TMCNs based on ruthenium(II), rhenium(I), and iridium(III) improve PDT, while manganese(II) and iridium(III) demonstrate exceptional sonosensitizing properties.

View Article and Find Full Text PDF

Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected Pt complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for Pt centers supported by popular κ-(,) ligands. While one product features an isomerized Pt center stabilized by the κ-(,,) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at Pt.

View Article and Find Full Text PDF

Unveiling the chemotherapeutic potential of two platinum(IV) complexes in skin cancer: Insights.

Curr Res Pharmacol Drug Discov

October 2024

School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Mount Lebanon, Lebanon.

Article Synopsis
  • The study evaluates two platinum (IV) complexes, P-PENT and P-HEX, for their effectiveness against skin cancer, showing strong cytotoxic effects on HaCaT-II-4 cells while being less harmful to mesenchymal stem cells.
  • The complexes trigger intrinsic apoptosis through key biochemical pathways, increasing apoptotic markers and reactive oxygen species, suggesting they induce cancer cell death.
  • In a mouse model, both complexes significantly inhibited tumor growth with lower doses than those used for traditional treatments like cisplatin, indicating they might be safer and more effective options for skin cancer therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!