A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of the Nuclear Receptor RORγ and Interleukin-17A Suppresses Neovascular Retinopathy: Involvement of Immunocompetent Microglia. | LitMetric

Objective: Although inhibitors of vascular endothelial growth factor (VEGF) provide benefit for the management of neovascular retinopathies, their use is limited to end-stage disease and some eyes are resistant. We hypothesized that retinoic acid-related orphan nuclear receptor γ (RORγ) and its downstream effector, interleukin (IL)-17A, upregulate VEGF and hence are important treatment targets for neovascular retinopathies.

Approach And Results: Utilizing a model of oxygen-induced retinopathy, confocal microscopy and flow cytometry, we identified that retinal immunocompetent cells, microglia, express IL-17A. This was confirmed in primary cultures of rat retinal microglia, where hypoxia increased IL-17A protein as well as IL-17A, RORγ, and tumor necrosis factor-α mRNA, which were reduced by the RORγ inhibitor, digoxin, and the RORα/RORγ inverse agonist, SR1001. By contrast, retinal macroglial Müller cells and ganglion cells, key sources of VEGF in oxygen-induced retinopathy, did not produce IL-17A when exposed to hypoxia and IL-1β. However, they expressed IL-17 receptors, and in response to IL-17A, secreted VEGF. This suggested that RORγ and IL-17A inhibition might attenuate neovascular retinopathy. Indeed, digoxin and SR1001 reduced retinal vaso-obliteration, neovascularization, and vascular leakage as well as VEGF and VEGF-related placental growth factor. Digoxin and SR1001 reduced microglial-derived IL-17A and Müller cell and ganglion cell damage. The importance of IL-17A in oxygen-induced retinopathy was confirmed by IL-17A neutralization reducing vasculopathy, VEGF, placental growth factor, tumor necrosis factor-α, microglial density and Müller cell, and ganglion cell injury.

Conclusions: Our findings indicate that an RORγ/IL-17A axis influences VEGF production and neovascular retinopathy by mechanisms involving neuroglia. Inhibition of RORγ and IL-17A may have potential for the improved treatment of neovascular retinopathies.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.115.307080DOI Listing

Publication Analysis

Top Keywords

neovascular retinopathy
12
growth factor
12
oxygen-induced retinopathy
12
il-17a
11
nuclear receptor
8
receptor rorγ
8
neovascular retinopathies
8
tumor necrosis
8
necrosis factor-α
8
rorγ il-17a
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!