Anaerobic co-digestion of vegetable waste and swine wastewater in high-rate horizontal reactors with fixed bed.

Waste Manag

Faculty of Agricultural and Veterinary Sciences, Univ Estadual Paulista, Campus of Jaboticabal, Department of Rural Engineering, Laboratory of Environmental Sanitation, 14884-900 Jaboticabal, SP, Brazil. Electronic address:

Published: June 2016

Considering the high waste generation that comes from agriculture and livestock farming, as well as the demand for natural gas, it is necessary to develop sustainable technologies which can reduce environmental impact. There is no available literature on the use of high-rate horizontal anaerobic reactors with fixed bed (HARFB) and continuous feed for the co-digestion of vegetable wastes (VW) and swine wastewater (SW). The aim of this work was to evaluate the reactor performance in terms of methane production, organic matter consumption, and removal of total and thermotolerant coliforms under different proportions of SW and VW, and organic loading rates (OLR) of 4.0, 5.2 and 11.0g COD (Ld)(-)(1). The mixture of SW and VW in the proportions of 90:10, 80:20 and 70:30 (SW:VW) with those OLRs provided great buffering capacity, with partial alkalinity reaching 3552mgL(-1), thereby avoiding the inhibition of methane production by volatile fatty acids produced during the fermentation process. Higher proportions of VW and higher OLR improved volumetric methane production with a maximum value of 1.08LCH4 (Ld)(-)(1), organic matter removal rates up to 98% and total and thermotolerant coliform removal rates of 99% were also observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2016.03.021DOI Listing

Publication Analysis

Top Keywords

methane production
12
co-digestion vegetable
8
swine wastewater
8
high-rate horizontal
8
reactors fixed
8
fixed bed
8
organic matter
8
total thermotolerant
8
removal rates
8
anaerobic co-digestion
4

Similar Publications

Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.

View Article and Find Full Text PDF

Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.

View Article and Find Full Text PDF

In a previous study, we developed an integrated reaction system combining NH decomposition and CO methanation within a membrane reactor, significantly enhancing reactor performance through efficient H separation. Ru/Ba/γ-AlO and Ru/ZrO were employed as catalysts for each reaction. To ensure the accuracy and reliability of our results, they were validated through 1D models using FlexPDE Professional Version 7.

View Article and Find Full Text PDF

Peatlands are invaluable but threatened ecosystems that store huge amounts of organic carbon globally and emit the greenhouse gasses carbon dioxide (CO) and methane (CH). Trophic interactions of microbial groups essential for methanogenesis are poorly understood in such systems, despite their importance. Thus, the present study aimed at unraveling trophic interactions between fermenters and methanogens in a nitrogen-limited, subarctic, pH-neutral fen.

View Article and Find Full Text PDF

Methane emissions from the riverine sandy wetlands on the Mongolia Plateau.

Environ Monit Assess

December 2024

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.

Methane (CH) processes and fluxes have been widely investigated in low-latitude tropical wetlands and high-latitude boreal peatlands. In the mid-latitude Mongolia Plateau, however, CH processes and fluxes have been less studied, particularly in riverine wetlands. In this study, in situ experiments were conducted in the riverine sandy wetlands of the Mongolia Plateau to gain a better understanding of CH emissions and their influencing mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!