Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31).

Curr Opin Hematol

aBlood Research Institute, BloodCenter of WisconsinbDepartment of Hematology, Union Hospital, Huazhong University of Science and TechnologycDepartments of PharmacologydCell Biology, Neurobiology and AnatomyeThe Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA*Panida Lertkiatmongkol and Danying Lio are equal co-first authors and contributed equally to the writing of this article.

Published: May 2016

AI Article Synopsis

  • - The article explores the role of PECAM-1, a molecule in endothelial cells, in keeping the vascular permeability barrier intact and helping it recover after being disrupted.
  • - PECAM-1 is mainly found at the junctions between endothelial cells, where it helps maintain their integrity and aids in recovery during inflammation or clotting events.
  • - Antibodies that interact with PECAM-1 could potentially be used to treat conditions related to vascular permeability due to their ability to enhance cell adhesion.

Article Abstract

Purpose Of Review: The purpose of this article is to describe the function of the vascular cell adhesion and signaling molecule, platelet/endothelial cell adhesion molecule-1 (PECAM-1), in endothelial cells, with special emphasis on its role in maintaining and restoring the vascular permeability barrier following disruption of the endothelial cell junction.

Recent Findings: In addition to its role as an inhibitory receptor in circulating platelets and leukocytes, PECAM-1 is highly expressed at endothelial cell-cell junctions, where it functions as an adhesive stress-response protein to both maintain endothelial cell junctional integrity and speed restoration of the vascular permeability barrier following inflammatory or thrombotic challenge.

Summary: Owing to the unique ability of antibodies that bind the membrane proximal region of the extracellular domain to trigger conformational changes leading to affinity modulation and homophilic adhesion strengthening, PECAM-1 might be an attractive target for treating vascular permeability disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986701PMC
http://dx.doi.org/10.1097/MOH.0000000000000239DOI Listing

Publication Analysis

Top Keywords

cell adhesion
12
vascular permeability
12
platelet/endothelial cell
8
adhesion molecule-1
8
permeability barrier
8
endothelial cell
8
endothelial
5
cell
5
endothelial functions
4
functions platelet/endothelial
4

Similar Publications

Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model.

Inflamm Regen

January 2025

Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.

Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.

View Article and Find Full Text PDF

The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.

View Article and Find Full Text PDF

GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding.

Nat Commun

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.

The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.

View Article and Find Full Text PDF

Endothelial Damage in JAK2V617F Myeloproliferative Neoplasms with Splanchnic Vein Thrombosis.

Thromb Haemost

January 2025

Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Background:  V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored.

Material And Methods:  Plasma and serum samples from V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!