Two low cost solid organic materials, sawdust and peat, were tested in laboratory batch microcosm and flow-through column experiments to determine their suitability for application in permeable reactive barriers (PRBs) supporting biodegradation of trichloroethene (TCE). In microcosms with peat, TCE (∼30μM) was sequentially and completely degraded to cis-dichloroethene (cDCE), vinyl chloride, and ethene through reductive dechlorination. In microcosms with sawdust, reductive dechlorination of TCE stopped at cDCE and high methane production (up to 3000μM) was observed. 16S rRNA gene copy numbers of Dehalobacter and Archaea were higher (1000 and 10 times, respectively) in sawdust microcosms than those in peat microcosms. Dehalococcoides and vcrA gene copy numbers were 10 times higher in peat microcosms than in sawdust microcosms. These gene copy number differences are consistent with the extent of TCE degradation and production of methane in the microcosms. Flow-through column experiments showed that hydraulic conductivity reduction with time was consistently greater in the sawdust column compared to the peat column. The greater conductivity reduction was likely due to biofouling and methane gas bubble formation. The experimental observations indicate that peat has potential to be a better solid organic material than sawdust to support reductive dechlorination of TCE in PRB applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2016.03.049 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark. Electronic address:
Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.
View Article and Find Full Text PDFChemosphere
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Massachusetts, United States. Electronic address:
There is significant interest in monitoring abiotic decomposition of chlorinated solvents at contaminated sites due to large uncertainties regarding the rates of abiotic attenuation of trichloroethylene (TCE) and perchloroethylene (PCE) under field conditions. In this study, an innovative passive sampling tool was developed to quantify acetylene, a characteristic product of abiotic reduction of TCE or PCE, in groundwater. The sampling mechanism is based on the highly specific and facile click reaction between acetylene and an azide compound to form a biologically and chemically stable triazole product.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.
Organohalide-respiring bacteria (OHRB) play a pivotal role in the transformation of organohalogens in diverse environments. This bibliometric analysis provides a timely overview of OHRB research trends and identifies knowledge gaps. Publication numbers have steadily increased since the process was discovered in 1982, with fluctuations in total citations and average citations per publication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!