In perceptual decision-making tasks, people balance the speed and accuracy with which they make their decisions by modulating a response threshold. Neuroimaging studies suggest that this speed-accuracy tradeoff is implemented in a corticobasal ganglia network that includes an important contribution from the pre-SMA. To test this hypothesis, we used anodal transcranial direct current stimulation (tDCS) to modulate neural activity in pre-SMA while participants performed a simple perceptual decision-making task. Participants viewed a pattern of moving dots and judged the direction of the global motion. In separate trials, they were cued to either respond quickly or accurately. We used the diffusion decision model to estimate the response threshold parameter, comparing conditions in which participants received sham or anodal tDCS. In three independent experiments, we failed to observe an influence of tDCS on the response threshold. Additional, exploratory analyses showed no influence of tDCS on the duration of nondecision processes or on the efficiency of information processing. Taken together, these findings provide a cautionary note, either concerning the causal role of pre-SMA in decision-making or on the utility of tDCS for modifying response caution in decision-making tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_00967DOI Listing

Publication Analysis

Top Keywords

perceptual decision-making
12
response threshold
12
transcranial direct
8
direct current
8
current stimulation
8
speed-accuracy tradeoff
8
three independent
8
decision-making tasks
8
influence tdcs
8
decision-making
5

Similar Publications

Background: Alterations in sensory perception, a core phenotype of autism, are attributed to imbalanced integration of sensory information and prior knowledge during perceptual statistical (Bayesian) inference. This hypothesis has gained momentum in recent years, partly because it can be implemented both at the computational level, as in Bayesian perception, and at the level of canonical neural microcircuitry, as in predictive coding. However, empirical investigations have yielded conflicting results with evidence remaining limited.

View Article and Find Full Text PDF

Many theories on cognitive effort start from the assumption that cognitive effort can be expended at will, and flexibly up- or down-regulated depending on expected task demand and rewards. However, while effort regulation has been investigated across a wide range of incentive conditions, few investigated the cost of effort regulation itself. Across four experiments, we studied the effects of reward expectancy and task difficulty on effort expenditure in a perceptual decision-making task (random-dot-motion) and a cognitive control task (colour-naming Stroop), and within each task comparted cues between short (cueing the next trial) and long (cueing the next six trials) prediction horizons.

View Article and Find Full Text PDF

Driving-Related Cognitive Abilities Prediction Based on Transformer's Multimodal Fusion Framework.

Sensors (Basel)

December 2024

Faculty of Information Science and Technology, Beijing University of Technology, Beijing 100124, China.

With the increasing complexity of urban roads and rising traffic flow, traffic safety has become a critical societal concern. Current research primarily addresses drivers' attention, reaction speed, and perceptual abilities, but comprehensive assessments of cognitive abilities in complex traffic environments are lacking. This study, grounded in cognitive science and neuropsychology, identifies and quantitatively evaluates ten cognitive components related to driving decision-making, execution, and psychological states by analyzing video footage of drivers' actions.

View Article and Find Full Text PDF

Policy complexity suppresses dopamine responses.

J Neurosci

January 2025

Department of Physiology, Anatomy and Genetics, University of Oxford.

Limits on information processing capacity impose limits on task performance. We show that male and female mice achieve performance on a perceptual decision task that is near-optimal given their capacity limits, as measured by policy complexity (the mutual information between states and actions). This behavioral profile could be achieved by reinforcement learning with a penalty on high complexity policies, realized through modulation of dopaminergic learning signals.

View Article and Find Full Text PDF

Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.

Neural Comput

January 2025

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.

Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!