Necropsy records and associated clinical histories from the rhesus macaque colony at the California National Primate Research Center were reviewed to identify mortality related to cardiac abnormalities involving left ventricular hypertrophy (LVH). Over a 21-y period, 162 cases (female, 90; male, 72) of idiopathic LVH were identified. Macaques presented to necropsy with prominent concentric hypertrophy of the left ventricle associated with striking reduction of the ventricular lumen. Among all LVH cases, 74 macaques (female, 39; male, 35), mostly young adults, presented for spontaneous (sudden) death; more than 50% of these 74 cases were associated with a recent history of sedation or intraspecific aggression. The risk of sudden death in the 6- to 9-y-old age group was significantly higher in male macaques. Subtle histologic cardiac lesions included karyomegaly and increased cardiac myocyte diameter. Pedigree analyses based on rhesus macaque LVH probands suggested a strong genetic predisposition for the condition. In humans, hypertrophic cardiomyopathy (HCM) is defined by the presence of unexplained left ventricular hypertrophy, associated with diverse clinical outcomes ranging from asymptomatic disease to sudden death. Although the overall risk of disease complications such as sudden death, end-stage heart failure, and stroke is low (1% to 2%) in patients with HCM, the absolute risk can vary dramatically. Prima facie comparison of HCM and LVH suggest that further study may allow the development of spontaneously occurring LVH in rhesus macaques as a useful model of HCM, to better understand the pathogenesis of this remarkably heterogeneous disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825967PMC

Publication Analysis

Top Keywords

sudden death
16
left ventricular
12
ventricular hypertrophy
12
rhesus macaques
8
california national
8
national primate
8
primate center
8
rhesus macaque
8
female male
8
lvh
6

Similar Publications

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

A novel COL3A1 gene variant associated with sudden death due to spontaneous pneumothorax.

Forensic Sci Med Pathol

January 2025

Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Spontaneous pneumothorax (SP) is a condition defined by abnormal gas accumulation in the chest cavity. Mutations of the collagen type III alpha 1 chain, COL3A1 gene, are primarily linked to vascular Ehlers-Danlos syndrome (vEDS); however, they can also contribute to structural changes in the tissue, like bullae of the lungs. In this case report, we present a young, thinly built boy who died due to a spontaneous pneumothorax.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common congenital anomaly in newborns. Advances in catheter and surgical techniques led to the majority of these patients surviving into adulthood, leading to evolving challenges due to the emergence of long-term complications such as arrhythmias. Interventional electrophysiology (EP) has had remarkable advances over the last few decades, and various techniques and devices have been explored to treat adult patients with CHD.

View Article and Find Full Text PDF

Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!