Unlabelled: When multiple prion strains are inoculated into the same host, they can interfere with each other. Strains with long incubation periods can suppress conversion of strains with short incubation periods; however, nothing is known about the conversion of the long-incubation-period strain during strain interference. To investigate this, we inoculated hamsters in the sciatic nerve with long-incubation-period strain 139H prior to superinfection with the short-incubation-period hyper (HY) strain of transmissible mink encephalopathy (TME). First, we found that 139H is transported along the same neuroanatomical tracks as HY TME, adding to the growing body of evidence indicating that PrP(Sc) favors retrograde transneuronal transport. In contrast to a previous report, we found that 139H interferes with HY TME infection, which is likely due to both strains targeting the same population of neurons following sciatic nerve inoculation. Under conditions where 139H blocked HY TME from causing disease, the strain-specific properties of PrP(Sc) corresponded with the strain that caused disease, consistent with our previous findings. In the groups of animals where incubation periods were not altered, we found that the animals contained a mixture of 139H and HY TME PrP(Sc) This finding expands the definition of strain interference to include conditions where PrP(Sc) formation is altered yet disease outcome is unaltered. Overall, these results contradict the premise that prion strains are static entities and instead suggest that strain mixtures are dynamic regardless of incubation period or clinical outcome of disease.

Importance: Prions can exist as a mixture of strains in naturally infected animals, where they are able to interfere with the conversion of each other and to extend incubation periods. Little is known, however, about the dynamics of strain conversion under conditions where incubation periods are not affected. We found that inoculation of the same animal with two strains can result in the alteration of conversion of both strains under conditions where the resulting disease was consistent with infection with only a single strain. These data challenge the idea that prion strains are static and suggests that strain mixtures are more dynamic than previously appreciated. This observation has significant implications for prion adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886777PMC
http://dx.doi.org/10.1128/JVI.00409-16DOI Listing

Publication Analysis

Top Keywords

incubation periods
20
prion strains
12
strain
10
strains
9
incubation period
8
conversion strains
8
long-incubation-period strain
8
strain interference
8
sciatic nerve
8
disease consistent
8

Similar Publications

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

The Potential Role of Sanguinarine as an Inhibitor of Leishmania PP2C in the Induction of Apoptosis.

Acta Parasitol

January 2025

División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México.

Leishmania spp. cause a wide range of human diseases, localized skin lesions, mucocutaneous and visceral infections. In the present study, the aim was to investigate the potential role of sanguinarine as a specific inhibitor of Leishmania PP2C that can induce apoptosis in the parasite.

View Article and Find Full Text PDF

In Vitro Biochemical Control of Taenia solium and Taenia saginata Eggs.

Acta Parasitol

January 2025

Laboratório de Biotecnologia e Bioquímica Aplicada, Departamento de Química, Universidade Federal de Lavras, Lavras, MG, Brasil.

Purpouse: The present study evaluated in vitro the action of the plant protease papain (EC 3.4.22.

View Article and Find Full Text PDF

The inherent deficiency of phospholipids in limits its nutritional value as live prey for marine fish larvae. In our previous study, we optimized a phospholipid enrichment method by incubating nauplii with 10 g of soybean lecithin per m of seawater for 12 h, significantly enhancing their phospholipid content. : The present study evaluated the impact of this enrichment on yellow drum () larvae, focusing on growth performance, intestinal morphology, body composition, weaning success, and desiccation stress resistance.

View Article and Find Full Text PDF

Toward an Efficient Differentiation of Two Strains Through Mass Spectrometry for Fungal Biotyping.

Curr Issues Mol Biol

January 2025

Laboratorio de Bioorgánica Tropical, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panama.

Considering that fungi display a great morphological, ecological, metabolic, and phylogenetic diversity, their taxonomic identification is extremely important because it helps us establish important information about each species and its possible biochemical and ecological roles. Traditionally, the identification of fungi at the species level has been carried out with molecular tools such as DNA sequencing, but it still represents a huge challenge today due to the heterogeneity of the fungal kingdom, making the task of identification a complex and difficult process. Biotyping, a type of chemotaxonomy, has been developed in the field of the identification/differentiation and classification of micro-fungi through tools such as mass spectrometry (MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!