Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823721 | PMC |
http://dx.doi.org/10.1038/srep24286 | DOI Listing |
Light Sci Appl
January 2025
School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.
Optical metrology is a well-established subject, dating back to early interferometry techniques utilizing light's linear momentum through fringes. In recent years, significant interest has arisen in using vortex light with orbital angular momentum (OAM), where the phase twists around a singular vortex in space or time. This has expanded metrology's boundaries to encompass highly sensitive chiral interactions between light and matter, three-dimensional motion detection via linear and rotational Doppler effects, and modal approaches surpassing the resolution limit for improved profiling and quantification.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Centre for NEMS and Nanophotonics (CNNP), Indian Institute of Technology Madras, Chennai, 600036, India.
Transmission-type plasmonic phase metasurfaces utilizing the Pancharatnam-Berry (PB) phase require constant transmittivity with complete phase variation from 0 to 2π. Usually, this is achieved by rotating metallic nanoparticles in an otherwise uniform lattice arrangement. However, this rotation and the chosen lattice structure cause a significant change in the transmittivity, resulting in a lower intensity of light with certain phases and a higher intensity for other phases.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
In this study, we investigate the application of support vector machines utilizing a radial basis function kernel for predicting nuclear α-decay half-lives. Our approach integrates a comprehensive set of physics-derived features, including characteristics derived from nuclear structure, to systematically evaluate their impact on predictive accuracy. In addition to traditional parameters such as proton and neutron numbers, as well as terms based on the liquid drop model (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!