Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Porous coordination polymers (PCPs) have been recently highlighted because of their high synthetic designability in structure and functions. Because of their ordered nanoporous structures with a large surface area and tunable pore surface functionality, PCPs have emerged as a significant class of nanoporous materials with potential applications in gas storage, separation, catalysis, and chemical sensing. Recent research has shown the utility of PCPs as host materials for the confinement of nanoparticles of inorganic polymers (IPs), such as metals, metal oxides, and metal chalcogenides. The fabrication of IP nanoparticles in PCPs (PCP⊃IP) has been studied for manifesting specific nanosized-dependent properties and host-guest synergistic functions. In this review, we describe the recent progress in the accommodation of IPs in the nanochannels of PCPs and the remarkable functions of the composite materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cs00940e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!