The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820387 | PMC |
http://dx.doi.org/10.1126/sciadv.1501675 | DOI Listing |
Glob Chang Biol
December 2024
Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
The negative impact of agricultural land on biodiversity is widely recognized. However, there remains a knowledge gap regarding the role of different crop types in maintaining biodiversity within the agricultural landscape. By extracting biodiversity data from global datasets and classifying different crop types, we quantified the contribution of different crop types to biodiversity.
View Article and Find Full Text PDFThe evolution of wildlife disease management and surveillance, as documented in the World Organisation for Animal Health's Scientific and Technical Review, reflects a deepening understanding of the links between wildlife health, ecosystem integrity and human well-being. Early work, beginning with the World Assembly of Delegates in 1954, primarily focused on diseases like rabies. This focus expanded over time to include broader concerns such as the impacts of climate change, habitat loss and increased human-wildlife interactions on wildlife health.
View Article and Find Full Text PDFRecent environmental change and biodiversity loss have modified ecosystems, altering disease dynamics. For wildlife health, this trend has translated into increased potential for disease transmission and reduced capacity to overcome significant population-level impacts, which may place species at risk of extinction. Thus, current approaches to wildlife health focus not on the absence of disease but rather on the concept of health promotion.
View Article and Find Full Text PDFGut Microbes
December 2025
Université Paris Cité, IAME, INSERM, Paris, France.
Metagenomic sequencing deepened our knowledge about the role of the intestinal microbiota in human health, and several studies with various methodologies explored its dynamics during antibiotic treatments. We compared the impact of four widely used antibiotics on the gut bacterial diversity. We used plasma and fecal samples collected during and after treatment from healthy volunteers assigned to a 5-day treatment either by ceftriaxone (1 g every 24 h through IV route), ceftazidime/avibactam (2 g/500 mg every 8 h through IV route), piperacillin/tazobactam (1 g/500 mg every 8 h through IV route) or moxifloxacin (400 mg every 24 h through oral route).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Post-graduation program in Ecology and Biodiversity Conservation, Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil; Post-graduation program in Ecology. Department of Ecology and Zoology, Laboratory of Freshwater Biodiversity, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil.
The frequency and intensity of wildfires have been increasing in many parts of the world, which may result in biodiversity loss. Wildfires can devastate plant communities, generating toxic ash that pollutes watercourses through runoff. However, our understanding of the effects of ash exposure on aquatic biodiversity is still limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!