The purpose of the study was to evaluate the frequency of ophthalmologic abnormalities in a cohort of myotonic dystrophy type 1 (DM1) patients and to correlate them with motor function. We reviewed the pathophysiology of cataract and low intraocular pressure (IOP). Method Patients were included after clinical and laboratory diagnosis and after signed informed consent. They were evaluated by Motor Function Measure scale, Portuguese version (MFM-P) and ophthalmic protocol. Results We evaluated 42 patients aged 17 to 64 years (mean 40.7 ± 12.5), 22 of which were men. IOP (n = 41) was reduced in all but one. We found cataract or positivity for surgery in 38 (90.48%) and ptosis in 23 (54.76%). These signs but not IOP were significantly correlated with severity of motor dysfunction. Abnormalities in ocular motility and stereopsis were observed. Conclusion Cataract and ptosis are frequent in DM1 and associated to motor dysfunction. Reduced IOP is also common, but appears not to be related with motor impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0004-282X20150218 | DOI Listing |
Geroscience
January 2025
Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.
View Article and Find Full Text PDFNat Med
January 2025
Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.
View Article and Find Full Text PDFCerebellum
January 2025
Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant (AD) neurodegenerative disorder prevalent in the Americas, particularly in Mexico. Clinical manifestations include progressive ataxia and epilepsy. However, it can exhibit wide phenotypic variability and even reduced penetrance.
View Article and Find Full Text PDFClin Neurophysiol Pract
December 2024
Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
Objective: The staircase phenomenon, which refers to the increases in the force of contraction with repetitive stimulation of the muscle, has been studied for many years, but the method is difficult and not widely used. Our objective was to evaluate the staircase phenomenon in skeletal muscle using a piezoelectric sensor.
Methods: Thirty-five subjects without neuromuscular diseases (normal controls), 11 patients with Becker muscular dystrophy (BMD), and 19 patients with myotonic dystrophy type 1 (MyD) were studied.
Hum Mol Genet
January 2025
Division of Neurology, Cincinnati Children's Hospital, 3333 Burnet Ave, Cincinnati, OH 45229, United States.
Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!