Using the ATP-independent transacylase CapW required for the biosynthesis of capuramycin-type antibiotics, we developed a biocatalytic approach for the synthesis of 43 analogues via a one-step aminolysis reaction from a methyl ester precursor as an acyl donor and various nonnative amines as acyl acceptors. Further examination of the donor substrate scope for CapW revealed that this enzyme can also catalyze a direct transamidation reaction using the major capuramycin congener as a semisynthetic precursor. Biological activity tests revealed that a few of the new capuramycin analogues have significantly improved antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Furthermore, most of the analogues are able to be covalently modified by the phosphotransferase CapP/Cpr17 involved in self resistance, providing critical insight for future studies regarding clinical development of the capuramycin antimycobacterial antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864588PMC
http://dx.doi.org/10.1039/c6ob00381hDOI Listing

Publication Analysis

Top Keywords

biocatalytic approach
8
capuramycin analogues
8
capuramycin
4
approach capuramycin
4
analogues
4
analogues exploiting
4
exploiting substrate
4
substrate permissive
4
permissive n-transacylase
4
n-transacylase capw
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!