The bond-frustrated ZnCr2Se4 displays strong spin-lattice coupling characterized by large magnetostriction and negative thermal expansion. Here, we report on systematic investigations on the magnetization, heat capacity, thermal expansion and magnetostriction of single crystalline ZnCr2(Se1-x S x )4 (0 ⩽ x ⩽ 0.1) to study the evolution of its spin-lattice coupling with sulfur substitution. We show that with increasing sulfur content, the antiferromagnetic ordering is gradually replaced by a spin-glass state, the temperature region of the negative thermal expansion expands, and the magnetostriction is gradually suppressed. These phenomena are explained qualitatively by taking into account the enhancement of the antiferromagnetic interactions and bond disorder introduced by sulfur substitution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/28/18/18LT01 | DOI Listing |
ACS Omega
January 2025
Institute for Micro Integration (IFM), University of Stuttgart, Allmandring 9B, 70569 Stuttgart, Germany.
The current demand for highly sensitive, optical sensors in biodiagnostics has prompted the development of ultrathin metal coatings on a range of substrates. Given the potential attenuation of the signal from a plasmonic sensor for the detection of fluorescent molecules when an adhesion layer between the substrate and coating is employed, this study examines the impact of various factors on the adhesion strength between gold coatings and substrates comprising glass and cyclo-olefin-polymer (COP). The objective is to identify potential configurations for high adhesion strength, thereby eliminating the need for an adhesion layer in the fabrication of optical sensors with gold coatings for diagnostic applications or to utilize a minimal adhesion layer thickness.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.
The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia.
Despite the impressive properties of additively manufactured products, their inherent anisotropy is a crucial challenge for polymeric parts made via fused filament fabrication (FFF). This study compared the tensile, thermophysical, smoke density, and toxicity characteristics of Ultem 9085 (a blend of polyetherimide and polycarbonate) for samples printed in various orientations (X, Y, and Z). The results revealed that mechanical properties, such as elastic modulus and tensile strength, significantly differed from the Z printing orientation, particularly in the X and Y printing layer orientations.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Republic of Korea.
Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect of blending with starch/PBAT on foaming behavior and physical properties during foaming processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!