It is well known that oxidative stress and carbamylation alter macromolecule properties and functions. We evaluated the influence of sodium cyanate (NaOCN) and the combination of cyanate and hydrogen peroxide (H2O2) on nonenzymatic antioxidant capacity (NEAC), total thiols, reduced glutathione (GSH) and hydroperoxide level in mononuclear blood cells (MNCs). We also examined plasma membrane properties of MNCs using the spin labeling method in EPR spectroscopy (electron paramagnetic resonance spectroscopy). We showed that MNCs are resistant to cyanate treatment up to a concentration of 2mM (survival test). On the other hand, a significant loss of antioxidant defense of cells, e.g. NEAC upon NaOCN, H2O2 and the combination of cyanate and hydrogen peroxide was observed. Carbamylation slightly decreased GSH and the free thiol level, but H2O2 and its combination with NaOCN lead to a decrease in their amounts. A markedly higher level of hydroperoxides was only observed in the cells treated with H2O2. We found a significant decrease in lipid membrane fluidity at the depth of 12th and 16th carbon atoms of fatty acids in lymphocytes treated with cyanate or H2O2. The combination of both substances acted synergistically and induced profound changes in comparison to cyanate and hydrogen peroxide used alone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2016.03.017DOI Listing

Publication Analysis

Top Keywords

cyanate hydrogen
12
hydrogen peroxide
12
h2o2 combination
12
oxidative stress
8
combination cyanate
8
cyanate
6
combination
5
h2o2
5
changes lymphocyte
4
lymphocyte properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!