The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18 mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2016.01.005DOI Listing

Publication Analysis

Top Keywords

mn-oxide nps
20
manganese-oxide nanoparticles
12
green synthesized
8
freshwater prawn
8
prawn macrobrachium
8
macrobrachium rosenbergii
8
mn-oxide
6
nps
5
dietary supplementation
4
supplementation green
4

Similar Publications

Manganese Oxide Nanoparticles for MRI-Based Multimodal Imaging and Theranostics.

Molecules

November 2024

Department of Life Sciences and Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal.

Manganese-based MRI contrast agents have recently attracted much attention as an alternative to Gd-based compounds. Various nanostructures have been proposed for potential applications in in vivo diagnostics and theranostics. This review is focused on the discussion of different types of Mn oxide-based nanoparticles (MnO NPs) obtained at the +2, +3 and +4 oxidation states for MRI, multimodal imaging or theranostic applications.

View Article and Find Full Text PDF

Enhanced immobilization of trace nickel by nanoplastic-Fe-Mn oxide complexes in sedimentary systems.

Sci Total Environ

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China. Electronic address:

Fe/Mn oxides are widely distributed mineral components in marine sediments and act as significant scavengers of trace metals. The emergence of plastic-rock complexes has led to an increasing recognition that plastics may influence the environmental behavior of minerals. Plastics, especially nanoplastics, can affect the formation of Fe/Mn oxides and their ability to immobilize heavy metals.

View Article and Find Full Text PDF

Encapsulation on rhodochrosite stabilizes toxic CdS nanoparticles in aqueous oxidation systems.

J Hazard Mater

March 2024

Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangztze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China. Electronic address:

Manganese (Mn) redox cycling and phase variation reactions play a crucial role in natural water settings. Rhodochrosite (MnCO), a mineral commonly found in oxygen-deprived environments, develops a surface oxide film upon exposure to oxygen. This Mn oxide film significantly influences the fate of nanoparticles within its proximity.

View Article and Find Full Text PDF

Efficient and excellent nanoparticles are required for the degradation of organic dyes in photocatalysis. In this study, silver-manganese oxide nanoparticles (Ag-Mn-NPs) were synthesized through a wet chemical precipitation method and characterized as an advanced catalyst that has enhanced photocatalytic activity under sunlight irradiation. The nanoparticles were characterized using scanning electron microscopy (SEM), XRD, UV-vis light spectra, and energy-dispersive X-ray (EDX) spectroscopy, revealing their spherical and agglomerated form.

View Article and Find Full Text PDF

Nanomaterials and nanotechnology have proven unassailable positions for environmental remediation and medicine. Currently, global environmental pollution and public health problems are increasing and need to be urgently addressed. Manganese (Mn) is one of the essential metal elements for plants and animals, it is necessary to integrate with nanotechnology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!