Angiotropism/pericytic mimicry and vascular co-option involve tumor cell interactions with the abluminal vascular surface. These two phenomena may be closely related. However, investigations of the two processes have developed in an independent fashion and different explanations offered as to their biological nature. Angiotropism describes the propensity of tumor cells to spread distantly via continuous migration along abluminal vascular surfaces, or extravascular migratory metastasis (EVMM). Vascular co-option has been proposed as an alternative mechanism by which tumors cells may gain access to a blood supply. We have used a murine brain melanoma model to analyze the interactions of GFP human melanoma cells injected into the mouse brain with red fluorescent lectin-labeled microvascular channels. Results have shown a striking spread of melanoma cells along preexisting microvascular channels and features of both vascular co-option and angiotropism/pericytic mimicry. This study has also documented the perivascular expression of Serpin B2 by angiotropic melanoma cells in the murine brain and in human melanoma brain metastases. Our findings suggest that vascular co-option and angiotropism/pericytic mimicry are closely related if not identical processes. Further studies are needed in order to establish whether EVMM is an alternative form of cancer metastasis in addition to intravascular cancer dissemination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822155PMC
http://dx.doi.org/10.1038/srep23834DOI Listing

Publication Analysis

Top Keywords

vascular co-option
16
angiotropism/pericytic mimicry
12
melanoma cells
12
brain melanoma
8
abluminal vascular
8
murine brain
8
human melanoma
8
microvascular channels
8
co-option angiotropism/pericytic
8
melanoma
7

Similar Publications

Basement membranes in lung metastasis growth and progression.

Matrix Biol

December 2024

Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL). Electronic address:

The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies.

View Article and Find Full Text PDF

There are several types of microvasculature supplying neoplasms: "newly formed blood vessels" (neoangiogenesis), which are a component of the tumor microenvironment (TME) of invasive carcinoma with wound healing-like reaction; and "pre-existing blood vessels", which are used as tumor-supplying vessels by neoplasms (co-option vessels) and are likely to develop in hypervascularized organs. We herein review the microvasculature of neoplasms of biliary tract with reference to pre-existing vessels and vessel co-options. In the hepatobiliary system, intrahepatic large and extrahepatic bile ducts (large bile ducts) and the gallbladder as well as hepatic lobules are highly vascularized regions.

View Article and Find Full Text PDF

Lymphoma growth, progression, and dissemination require tumor cell interaction with supporting vessels and are facilitated through tumor-promoted angiogenesis, lymphangiogenesis, and/or lymphoma vessel co-option. Vessel co-option has been shown to be responsible for tumor initiation, metastasis, and resistance to anti-angiogenic treatment but is largely uncharacterized in the setting of lymphoma. We developed an in vitro model to study lymphoma-vessel interactions and found that mantle cell lymphoma (MCL) cells co-cultured on Matrigel with human umbilical vein (HUVEC) or human lymphatic (HLEC) endothelial cells migrate to and anneal with newly formed capillary-like (CLS) or lymphatic-like (LLS) structures, consistent with lymphoma-vessel co-option.

View Article and Find Full Text PDF

Angiogenesis refers to the process of forming a new network of blood vessels from existing ones through the migration, proliferation, and differentiation of endothelial cells. This process is crucial for the growth and spread of solid tumors, particularly once the tumor volume exceeds 2 mm, as the newly formed vascular network provides essential oxygen, nutrients, and growth factors to the tumor. Anti-angiogenesis therapy has become one of the commonly used targeted treatments for cancer in clinical practice.

View Article and Find Full Text PDF
Article Synopsis
  • In brain metastasis, cancer cells use nearby blood vessels to migrate, a process called vessel co-option, but how this works is not well understood.
  • Research using brain tissue models shows that the different stiffness levels between blood vessels and the surrounding brain tissue drive cancer cell movement.
  • The study reveals that cancer cells adhere to the vessel's basement membrane and that both the rigidity of the vessels and the softness of the brain tissue influence how these cells migrate, shedding light on how mechanical properties affect cancer invasion.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!