The ability of diphenyl diselenide [(PhSe)2] to attenuate oxidative damage was evaluated in the liver, gills, brain, and muscle of carp (Cyprinus carpio) and silver catfish (Rhamdia quelen) experimentally exposed to fipronil (FPN). Initially, the fish were fed a diet without (PhSe)2 or a diet containing 3.0 mg/kg of (PhSe)2 for 60 days. After the 60-day period, the fish were exposed to 0.65 µg/L of FPN for 192 h. The results showed that carp exposed to FPN and not fed with (PhSe)2 exhibited acetylcholinesterase (AChE) inhibition in brain and muscle, and increased thiobarbituric acid-reactive substance (TBARS) in liver, gills, and brain. Furthermore, FPN decreased nonprotein thiols (NPSH) and δ-aminolevulinate dehydratase (δ-ALA-D) in carp liver and gills, and increased plasma glucose and protein levels. In silver catfish, FPN inhibited AChE and increased TBARS levels in muscle. In addition, glutathione S-transferase (GST) decreased in liver and muscle, and plasma glucose was increased. (PhSe)2 reversed some of these effects. It prevented the increase in TBARS levels in liver, gills, and brain in carp and in silver catfish muscle, and reversed the increase in plasma glucose levels in both species. Additionally, (PhSe)2 increased the NPSH levels in carp and silver catfish that had decreased in response to FPN exposure. However, (PhSe)2 was not effective in reversing the AChE inhibition in brain and muscle or the δ-ALA-D decrease in carp liver. Thus, (PhSe)2 protects tissues of both species of fish, mainly by preventing or counteracting the effects of FPN, on TBARS levels, antioxidants, and present anti-hyperglycemic property.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-016-0223-5DOI Listing

Publication Analysis

Top Keywords

liver gills
16
silver catfish
16
gills brain
12
brain muscle
12
plasma glucose
12
tbars levels
12
diphenyl diselenide
8
fish exposed
8
ache inhibition
8
inhibition brain
8

Similar Publications

Article Synopsis
  • Pollution from heavy metals like arsenic, lead, and mercury poses significant risks to aquatic life, humans, and the ecosystem, leading to health concerns after consuming contaminated fish.
  • The study focused on assessing the levels of these metals in common carp from Baqubah, Iraq, to understand their impact on human health and aquaculture practices.
  • Results indicated that while arsenic and lead levels were within safe limits set by WHO, mercury levels exceeded those limits, and histopathological damage in fish organs highlighted the adverse effects of metal exposure.
View Article and Find Full Text PDF

Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.

Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.

View Article and Find Full Text PDF

Eight years after the tailings dam collapse in Mariana, MG, Brazil, several aspects of this massive disaster are yet to be elucidated. Our goal was to investigate the impact of the mud flow on 16 fish species collected across 15 points from the Doce River, addressing 12 metal concentrations, tissue oxidative status (antioxidant enzymes and stress biomarkers), and histopathological analyses. The species Trachelyopterus striatulus, Prochilodus vimboides, Loricariichthys castaneus, Lophiosilurus alexandri, Hypostomus affinis, Hoplias intermedius were shown to be the most affected regarding the gills tissue integrity; Hypostomus affinis, Oligosarcus acutirostris, Lophiosilurus alexandri, Pygocentrus nattereri, Hoplosternum littorale, and Loricariichthys castaneus showed the highest levels of liver health.

View Article and Find Full Text PDF

Microplastics in seawater and fish from the Baltic Sea were analyzed. The significant contribution of the study is due to extensive collection of fish and surface water samples from corresponding fishing zones. Microplastics were detected in 100 % of seawater and 61 % of fish samples.

View Article and Find Full Text PDF

This study investigates the impact of environmentally relevant concentrations of azithromycin on Poecilia reticulata, through biomarkers at different levels. To this end, the somatic indexes of P. reticulata were evaluated, and liver and gill samples were collected and analyzed for biochemical and histopathological alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!