Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/circinterventions.115.003133 | DOI Listing |
Background: Failure after rotator cuff repair is typically due to a loss of integrity of the bone-tendon interface. The BioWick anchor (Zimmer-Biomet) is an interpositional scaffold-anchor that was developed to improve tendon-bone healing. The purpose of this study was to determine the clinical efficacy of this novel anchor compared with a standard anchor with respect to retear rates and patient outcomes.
View Article and Find Full Text PDFCardiovasc Interv Ther
December 2024
Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya-ku, Saitama, Saitama, 330-8503, Japan.
Bioresorbable scaffolds (BRS) were developed as an innovative solution to overcome the limitations of metallic stents. While polymeric BRS initially demonstrated comparable clinical outcomes to drug-eluting stent (DES) in clinical trials, subsequent large-scale studies revealed that patients implanted with polymeric BRS experienced higher rates of scaffold thrombosis (ScT) and target lesion failure compared to those with metallic stents. Resorbable magnesium scaffolds (RMS) have emerged as a promising alternative owing to magnesium's natural degradability and favorable mechanical properties.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland.
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, encompassing autografts and allografts, is constrained by several factors.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET), Av. Colón 10850, Mar del Plata B7606BWV, Argentina.
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Mechanical Design Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Advanced Mechanical Components Design & Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea; Innovative Mechanobio Active Materials Based Medical Device Demonstration Center, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!