Breast volumetric analysis for aesthetic planning in breast reconstruction: a literature review of techniques.

Gland Surg

1 Monash University Plastic and Reconstructive Surgery Group (Peninsula Clinical School), Peninsula Health, Frankston, Victoria 3199, Australia ; 2 Department of Surgery, Frankston Hospital, Peninsula Health, Frankston, Victoria 3199, Australia.

Published: April 2016

Background: Accurate volumetric analysis is an essential component of preoperative planning in both reconstructive and aesthetic breast procedures towards achieving symmetrization and patient-satisfactory outcome. Numerous comparative studies and reviews of individual techniques have been reported. However, a unifying review of all techniques comparing their accuracy, reliability, and practicality has been lacking.

Methods: A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE, was undertaken.

Results: Since Bouman's first description of water displacement method, a range of volumetric assessment techniques have been described: thermoplastic casting, direct anthropomorphic measurement, two-dimensional (2D) imaging, and computed tomography (CT)/magnetic resonance imaging (MRI) scans. However, most have been unreliable, difficult to execute and demonstrate limited practicability. Introduction of 3D surface imaging has revolutionized the field due to its ease of use, fast speed, accuracy, and reliability. However, its widespread use has been limited by its high cost and lack of high level of evidence. Recent developments have unveiled the first web-based 3D surface imaging program, 4D imaging, and 3D printing.

Conclusions: Despite its importance, an accurate, reliable, and simple breast volumetric analysis tool has been elusive until the introduction of 3D surface imaging technology. However, its high cost has limited its wide usage. Novel adjunct technologies, such as web-based 3D surface imaging program, 4D imaging, and 3D printing, appear promising.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791357PMC
http://dx.doi.org/10.3978/j.issn.2227-684X.2015.10.03DOI Listing

Publication Analysis

Top Keywords

surface imaging
16
volumetric analysis
12
breast volumetric
8
review techniques
8
accuracy reliability
8
imaging
8
introduction surface
8
high cost
8
web-based surface
8
imaging program
8

Similar Publications

We report the fabrication and characterization of a Bi(III) oxide/polypyrrole (BiO/Ppy) nanocomposite thin film optoelectronic photodetector synthesized by a simple one-pot method. The nanocomposite consists of spherical BiO nanoparticles embedded in a Ppy matrix, forming a porous structure with a high surface area. The XRD analysis reveals that the BiO nanoparticles have a poly-crystalline nature with a crystal size of 40 nm and an optical bandgap of 2.

View Article and Find Full Text PDF

Objective: To evaluate the short-term clinical efficacy of external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures (AO-23C type), based on the principles of Chinese osteosynthesis (CO).

Methods: Forty-eight patients with unstable distal radius fractures between January 2022 and February 2023 were retrospectively analyzed and divided into the CO external fixation group and internal fixation group. CO external fixation group consisted of 25 patients, including 7 males and 18 females, aged from 37 to 56 years old with an average of ( 52.

View Article and Find Full Text PDF

The creation of polymer composites with better performance is a crucial thing. The cellulosic filler material gain popularity in polymer composites. In this study, aquatic plant Pistia stratiote leaves were used as a raw material for cellulose extraction.

View Article and Find Full Text PDF

The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.

View Article and Find Full Text PDF

A highly sensitive and fast-response fluorescence nanoprobe for in vivo imaging of hypochlorous acid.

J Hazard Mater

January 2025

State Key laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China. Electronic address:

Fluorescent probes for in vivo hypochlorous acid (HClO) imaging often face challenges of low selectivity and high cytotoxicity, largely due to poor analyte recognition and water-insoluble aromatic skeletons. To address this, we synthesized fluorescein hydrazide by introducing a spiro-lactam unit into fluorescein, which offers high emission intensity and molar absorption. The five-membered heterocycle in fluorescein hydrazide is selectively disrupted by HClO, enhancing the conjugated system and electron delocalization of the fluorophore, resulting in highly sensitive fluorescence detection of HClO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!