Many scarab beetles spend the majority of their lives belowground as larvae, feeding on grass roots. Many of these larvae are significant pests, causing damage to crops and grasslands. Damage by larvae of the greyback cane beetle (Dermolepida albohirtum), for example, can cause financial losses of up to AU$40 million annually to the Australian sugarcane industry. We review the ecology of some scarab larvae in Australasia, focusing on three subfamilies; Dynastinae, Rutelinae, and Melolonthinae, containing key pest species. Although considerable research on the control of some scarab pests has been carried out in Australasia, for some species, the basic biology and ecology remains largely unexplored. We synthesize what is known about these scarab larvae and outline key knowledge gaps to highlight future research directions with a view to improve pest management. We do this by presenting an overview of the scarab larval host plants and feeding behavior; the impacts of abiotic (temperature, moisture, and fertilization) and biotic (pathogens, natural enemies, and microbial symbionts) factors on scarab larvae and conclude with how abiotic and biotic factors can be applied in agriculture for improved pest management, suggesting future research directions. Several host plant microbial symbionts, such as arbuscular mycorrhizal fungi and endophytes, can improve plant tolerance to scarabs and reduce larval performance, which have shown promise for use in pest management. In addition to this, several microbial scarab pathogens have been isolated for commercial use in pest management with particularly promising results. The entomopathogenic fungus Metarhizium anisopliae caused a 50% reduction in cane beetle larvae while natural enemies such as entomopathogenic nematodes have also shown potential as a biocontrol. Key abiotic factors, such as soil water, play an important role in affecting both scarab larvae and these control agents and should therefore feature in future multi-factorial experiments. Continued research should focus on filling knowledge gaps including host plant preferences, attractive trap crops, and naturally occurring pathogens that are locally adapted, to achieve high efficacy in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802167PMC
http://dx.doi.org/10.3389/fpls.2016.00321DOI Listing

Publication Analysis

Top Keywords

scarab larvae
16
pest management
16
future directions
12
feeding grass
8
grass roots
8
scarab
8
larvae
8
cane beetle
8
knowledge gaps
8
natural enemies
8

Similar Publications

Evidence for the independent evolution of a rectal complex within the beetle superfamily Scarabaeoidea.

Arthropod Struct Dev

January 2025

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) - University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy.

Rectal or cryptonephridial complexes have evolved repeatedly in arthropods, including in beetles where they occur in ∼190,000 species of Cucujiformia + Bostrichoidea, and Lepidoptera where they occur in ∼160,000 species. Sections of the Malpighian/renal tubules coat the outer surface of the rectum, acting as powerful recycling systems of the gut contents, recovering water and specific solutes. There are hints that a rectal complex evolved independently within another beetle group, Scarabaeoidea.

View Article and Find Full Text PDF

New Strains of the Entomopathogenic Nematodes , , and for White Grub Management.

Insects

December 2024

Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ 08901, USA.

White grubs possess natural defense mechanisms against entomopathogenic nematodes (EPNs). Hence, EPN isolates that naturally infect white grubs tend to be among the most effective biological control agents of white grubs. We tested the virulence of four EPN isolates recently isolated from infected white grubs in turfgrass areas in central New Jersey, USA against third-instar larvae of , , and , which are pests of turfgrass and ornamental plants in the northeastern USA.

View Article and Find Full Text PDF

This study utilized cultivable methods and 16 S amplicon sequencing to compare taxonomic profiles and functional potential of gut bacteria in the scarab beetle, Anomola dimidiata, under cellulose-enriched conditions. Eight culturable cellulolytic gut bacteria were isolated from the midgut and hindgut of the scarab larvae, respectively. 16 S amplicon sequencing evinced that the most represented taxonomic profiles at phylum level in the fermentation chamber and midgut were Bacillota (71.

View Article and Find Full Text PDF

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, most of the released 137Cs remained in the litter and surface soil of the adjacent forest floor. However, 137Cs absorption by large soil invertebrates near this site has not been estimated. The aim of this study was to understand the role of soil macroinvertebrates in 137Cs uptake from forest litter into forest ecosystems.

View Article and Find Full Text PDF

The impact of dung beetles on the free-living stages of ruminant parasites in faeces and their role as biological control agents in grazing livestock.

Vet Parasitol

October 2024

Scarab Research Unit, Department of Zoology and Entomology, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa. Electronic address:

Dung beetles provide a variety of ecosystem services in both natural and farmed landscapes. Amongst these services, reductions in the abundance of the free-living stages of pests and parasites that develop in faeces is considered to be of great importance. There is evidence from Australia that enhanced dung beetle populations can reduce populations of pest fly species, particularly the bush fly, however, there is little empirical evidence for reductions in the incidence and impact of nematode parasitism in grazing ruminants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!