The 14-3-3 gene family, which is conserved in eukaryotes, is involved in protein-protein interactions and mediates signal transduction. However, detailed investigations of the 14-3-3 gene family in Medicago truncatula are largely unknown. In this study, the identification and study of M. truncatula 14-3-3-family genes were performed based on the latest M. truncatula genome. In the M. truncatula genome, 10 14-3-3 family genes were identified, and they can be grouped into ε and non-ε groups. An exon-intron analysis showed that the gene structures are conserved in the same group. The protein structure analysis showed that 14-3-3 proteins in M. truncatula are composed of nine typical antiparallel α-helices. The expression patterns of Mt14-3-3 genes indicated that they are expressed in all tissues. Furthermore, the gene expression levels of Mt14-3-3 under hormone treatment and Sinorhizobium meliloti infection showed that the Mt14-3-3 genes were involve in nodule formation. Our findings lay a solid foundation for further functional studies of 14-3-3 in M. truncatula.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801894PMC
http://dx.doi.org/10.3389/fpls.2016.00320DOI Listing

Publication Analysis

Top Keywords

analysis 14-3-3
8
14-3-3 family
8
family genes
8
medicago truncatula
8
14-3-3 gene
8
gene family
8
truncatula genome
8
mt14-3-3 genes
8
truncatula
7
14-3-3
6

Similar Publications

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background And Purpose: F. nucleatum, a gram-negative oral bacteria, is abundant in laryngeal cancer (LC). While specific 14-3-3 proteins act as LC oncogenes, the link between F.

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

Background: YWHAB (14-3-3 Beta) was found in the secretome of miR-526b and miR-655 overexpressed breast cancer (BRCA) cell lines. The potential of YWHAB as a therapeutic target or biomarker for BRCA is investigated here.

Methods: After YWHAB was knocked down with siRNA, BRCA cell lines were used for in vitro assays (proliferation, migration, epithelial-to-mesenchymal transition).

View Article and Find Full Text PDF

We report the first multicenter, prospective, randomized noninferiority controlled trial of steerable ureteroscopic renal evacuation (SURE) for nephrolithiasis treatment. Candidates for laser lithotripsy ≥18 years with ≥1 renal stone ≥7 mm and 7-20 mm stone burden were randomized 1:1 SURE ureteroscopy (URS). SURE was performed using the CVAC Aspiration System, a novel steerable irrigation-aspiration catheter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!