Aim: The aim was to detect virulence gene associated with the Salmonella serovars isolated from pork and Slaughterhouse environment.
Materials And Methods: Salmonella isolates (n=37) used in this study were isolated from 270 pork and slaughter house environmental samples collected from the Ahmedabad Municipal Corporation Slaughter House, Ahmedabad, Gujarat, India. Salmonella serovars were isolated and identified as per BAM USFDA method and serotyped at National Salmonella and Escherichia Centre, Central Research Institute, Kasauli (Himachal Pradesh, India). Polymerase chain reaction technique was used for detection of five genes, namely invA, spvR, spvC, fimA and stn among different serovars of Salmonella.
Results: Out of a total of 270 samples, 37 (13.70%) Salmonella were isolated with two serovars, namely Enteritidis and Typhimurium. All Salmonella serovars produced 284 bp invA gene, 84 bp fimA and 260 bp amplicon for enterotoxin (stn) gene whereas 30 isolates possessed 310 bp spvR gene, but no isolate possessed spvC gene.
Conclusion: Presence of invA, fimA and stn gene in all isolates shows that they are the specific targets for Salmonella identification and are capable of producing gastroenteric illness to humans, whereas 20 Typhimurium serovars and 10 Enteritidis serovars can able to produce systemic infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777800 | PMC |
http://dx.doi.org/10.14202/vetworld.2015.121-124 | DOI Listing |
Vaccines (Basel)
December 2024
Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy.
is considered the major zoonotic and foodborne pathogen responsible for human infections. It includes the serovars causing typhoid fever ( and ) and the non-typhoidal salmonella (NTS) serovars ( and ), causing enteric infections known as "Salmonellosis". NTS represents a major public health burden worldwide.
View Article and Find Full Text PDFAvian Pathol
January 2025
Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil, Rio Grande do Sul, Brazil.
serovar Gallinarum biovar Gallinarum is a pathogenic bacterium that causes fowl typhoid (FT), affecting chicken flocks worldwide. This study aimed to evaluate the emergence, dissemination and genomic profile of Gallinarum lineages from Brazil. Twelve whole-genomes sequences (WGS) of different .
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Egg and Poultry Production Safety Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, U.S.A.
Salmonella is an enteric pathogenic bacterium in mammals that thrives in sewage, soil, and aquatic environments because of its wide ecological adaptability. The spread of Salmonella infection is associated with a lack of clean water, poor hygiene, and poor sanitation in developing countries. However, the input of Salmonella-contaminated surface water and groundwater in the environmental dissemination of antimicrobial-resistant Salmonella is obscure outside developed countries.
View Article and Find Full Text PDFPLoS One
January 2025
Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Salmonella Dublin is a serovar that causes severe infections and cattle. Despite the importance of this agent, research on achieving its elimination from dairy farms is limited, which complicates risk mitigation and control efforts. This study thus aimed to assess the prevalence of S.
View Article and Find Full Text PDFiScience
January 2025
College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China.
serovar Enteritidis (SE) incurs foodborne illnesses and poses a severe threat to poultry industry and human health. However, the molecular mechanisms underlying chicken responding to SE inoculation remain elusive. Here, we characterized the transcriptome and proteome of chicken cecum 3 days post SE inoculation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!