The estimation of many spectral-based quantitative ultrasound parameters assumes that backscattered echo signals are from a stationary, incoherent scattering process. The accuracy of these assumptions in real tissue can limit the diagnostic value of these parameters and the physical insight about tissue microstructure they can convey. This work presents an empirical decision test to determine the presence of significant coherent contributions to echo signals and whether they are caused by low scatterer number densities or the presence of specular reflectors or scatterers with periodic spacing. This is achieved by computing parameters from echo signals that quantify stationary or nonstationary features related to coherent scattering, and then comparing their values to thresholds determined from a reference material providing diffuse scattering. The paper first presents a number of parameters with demonstrated sensitivity to coherent scattering and describes criteria to select those with the highest sensitivity using simulated and phantom-based echo data. Results showed that the echo amplitude signal-to-noise ratio and the multitaper-generalized spectrum were the parameters with the highest sensitivity to coherent scattering with stationary and nonstationary features, respectively. These parameters were incorporated into the reference-based decision test, which successfully identified regions in simulated and tissue-mimicking phantoms with different incoherent and coherent scattering conditions. When scatterers with periodic organization were detected, the combination of stationary and nonstationary analysis permitted the estimation of the mean spacing below and above the resolution limit imposed by the pulse size. Preliminary applications of this algorithm to human cervical tissue ex vivo showed correspondence between regions of B-mode images showing bright reflectors, tissue interfaces, and hypoechoic regions with regions classified as specular reflectors and low scatterer number density. These results encourage further application of the algorithm to more structurally complex phantoms and tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033677 | PMC |
http://dx.doi.org/10.1109/TUFFC.2016.2547341 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, CHINA.
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing.
View Article and Find Full Text PDFACS Nano
January 2025
Center for Terahertz Waves and School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
The physical picture for photocurrent injection and coherent control in intrinsic graphene under two-color laser excitation remains obscure. Previously, photocurrent injection of intrinsic graphene was attributed to the quantum interference between two electronic transition pathways of single-photon and two-photon absorptions as well as layer-to-layer coupling. Here, we show that quantum interference between stimulated electronic Raman scattering and single-photon absorption plays a very important role in contributing to the total photocurrent, while interlayer coupling does not sufficiently affect the photocurrent injection, which is in contrast to the previous interpretation of the experimental results on photocurrent injection and coherent control.
View Article and Find Full Text PDFNanophotonics
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
A combination of femtosecond stimulated Raman scattering and surface-enhanced Raman scattering, termed surface-enhanced stimulated Raman scattering (SE-FSRS), was proposed to leverage both temporal precision and sensitivity for advanced molecular dynamics analysis. During the initial successful implementations of this approach, unexpected spectral distortions were observed, and several potential explanations were proposed. Further progress in this novel technique and its broader implementation requires a profound understanding of the factors influencing the shape of the registered spectra and the underlying mechanisms.
View Article and Find Full Text PDFNanophotonics
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.
View Article and Find Full Text PDFNat Commun
January 2025
SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, USA.
Diffraction-before-destruction imaging with ultrashort X-ray pulses can visualize non-equilibrium processes, such as chemical reactions, with sub-femtosecond precision in the native environment. Here, a nanospecimen diffracts a single X-ray flash before it disintegrates. The sample structure can be reconstructed from the coherent diffraction image (CDI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!