Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a method for unsupervised many-to-many object matching from multiple networks, which is the task of finding correspondences between groups of nodes in different networks. For example, the proposed method can discover shared word groups from multi-lingual document-word networks without cross-language alignment information. We assume that multiple networks share groups, and each group has its own interaction pattern with other groups. Using infinite relational models with this assumption, objects in different networks are clustered into common groups depending on their interaction patterns, discovering a matching. The effectiveness of the proposed method is experimentally demonstrated by using synthetic and real relational data sets, which include applications to cross-domain recommendation without shared user/item identifiers and multi-lingual word clustering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2015.2469284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!