A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Incremental Learning of Random Forests for Large-Scale Image Classification. | LitMetric

Large image datasets such as ImageNet or open-ended photo websites like Flickr are revealing new challenges to image classification that were not apparent in smaller, fixed sets. In particular, the efficient handling of dynamically growing datasets, where not only the amount of training data but also the number of classes increases over time, is a relatively unexplored problem. In this challenging setting, we study how two variants of Random Forests (RF) perform under four strategies to incorporate new classes while avoiding to retrain the RFs from scratch. The various strategies account for different trade-offs between classification accuracy and computational efficiency. In our extensive experiments, we show that both RF variants, one based on Nearest Class Mean classifiers and the other on SVMs, outperform conventional RFs and are well suited for incrementally learning new classes. In particular, we show that RFs initially trained with just 10 classes can be extended to 1,000 classes with an acceptable loss of accuracy compared to training from the full data and with great computational savings compared to retraining for each new batch of classes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2015.2459678DOI Listing

Publication Analysis

Top Keywords

random forests
8
image classification
8
classes
6
incremental learning
4
learning random
4
forests large-scale
4
large-scale image
4
classification large
4
large image
4
image datasets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!