Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition.

Nat Commun

Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.

Published: April 2016

UHRF1 is an important epigenetic regulator for maintenance DNA methylation. UHRF1 recognizes hemi-methylated DNA (hm-DNA) and trimethylation of histone H3K9 (H3K9me3), but the regulatory mechanism remains unknown. Here we show that UHRF1 adopts a closed conformation, in which a C-terminal region (Spacer) binds to the tandem Tudor domain (TTD) and inhibits H3K9me3 recognition, whereas the SET-and-RING-associated (SRA) domain binds to the plant homeodomain (PHD) and inhibits H3R2 recognition. Hm-DNA impairs the intramolecular interactions and promotes H3K9me3 recognition by TTD-PHD. The Spacer also facilitates UHRF1-DNMT1 interaction and enhances hm-DNA-binding affinity of the SRA. When TTD-PHD binds to H3K9me3, SRA-Spacer may exist in a dynamic equilibrium: either recognizes hm-DNA or recruits DNMT1 to chromatin. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by URHF1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822050PMC
http://dx.doi.org/10.1038/ncomms11197DOI Listing

Publication Analysis

Top Keywords

hemi-methylated dna
8
closed conformation
8
h3k9me3 recognition
8
recognition
5
h3k9me3
5
dna opens
4
opens closed
4
uhrf1
4
conformation uhrf1
4
uhrf1 facilitate
4

Similar Publications

Mono-ubiquitination of lysine 18 on histone H3 (H3K18ub), catalyzed by UHRF1, is a DNMT1 docking site that facilitates replication-coupled DNA methylation maintenance. Its functions beyond this are unknown. Here, we genomically map simultaneous increases in UHRF1-dependent H3K18ub and SUV39H1/H2-dependent H3K9me3 following DNMT1 inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • The CDCA7 protein, involved in ICF syndrome, has a unique carboxyl-terminal cysteine-rich domain (CRD) that binds to a specific DNA structure.
  • This binding occurs preferentially with a hemi-methylated non-B DNA form, distinguishing CDCA7 from ICF mutants.
  • CDCA7's concentration in specific chromatin regions during DNA replication suggests it plays a crucial role in directing DNA methylation at juxtacentromeric regions.
View Article and Find Full Text PDF

Aberrant DNA methylation patterns have been used for cancer detection. However, DNA hemi-methylation, present at about 10% CpG dinucleotides, has been less well studied. Here we show that a majority of differentially hemi-methylated regions (DHMRs) in liver tumor DNA or plasma cells free (cf) DNA do not overlap with differentially methylated regions (DMRs) of the same samples, indicating that DHMRs could serve as independent biomarkers.

View Article and Find Full Text PDF

Uncovering the roles of DNA hemi-methylation in transcriptional regulation using MspJI-assisted hemi-methylation sequencing.

Nucleic Acids Res

March 2024

CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.

Hemi-methylated cytosine dyads widely occur on mammalian genomic DNA, and can be stably inherited across cell divisions, serving as potential epigenetic marks. Previous identification of hemi-methylation relied on harsh bisulfite treatment, leading to extensive DNA degradation and loss of methylation information. Here we introduce Mhemi-seq, a bisulfite-free strategy, to efficiently resolve methylation status of cytosine dyads into unmethylation, strand-specific hemi-methylation, or full-methylation.

View Article and Find Full Text PDF

, encoding a protein with a C-terminal cysteine-rich domain (CRD), is mutated in immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome, a disease related to hypomethylation of juxtacentromeric satellite DNA. How CDCA7 directs DNA methylation to juxtacentromeric regions is unknown. Here, we show that the CDCA7 CRD adopts a unique zinc-binding structure that recognizes a CpG dyad in a non-B DNA formed by two sequence motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!