BM ageing: Implication for cell therapy with EPCs.

Mech Ageing Dev

Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy. Electronic address:

Published: October 2016

AI Article Synopsis

  • The bone marrow is a key source of stem cells for treating cardiovascular diseases, particularly through the use of endothelial progenitor cells (EPCs) that aid in repairing blood vessels and promoting new blood vessel formation.
  • Aging adversely affects both bone marrow and EPC function, leading to decreased effectiveness of EPC therapies in older patients with ischemic heart diseases.
  • The review explores the changes that occur with age in bone marrow and EPCs, discusses their implications for heart-related treatments, and highlights new strategies being researched to improve the performance of EPCs in therapy.

Article Abstract

The bone marrow (BM) is a well-recognized source of stem/progenitor cells for cell therapy in cardiovascular diseases (CVDs). Preclinical and clinical studies suggest that endothelial progenitor cells (EPCs) contribute to reparative process of vascular endothelium and participate in angiogenesis. As for all organs and cells across the lifespan, BM and EPCs are negatively impacted by ageing due to microenvironment modifications and EPC progressive dysfunctions. The encouraging results in terms of neovascularization observed in young animals after EPC administration were mitigated in aged patients treated for ischemic CVDs. The limited efficacy of EPC-based therapy in clinical setting might be ascribed at least partly to ageing. In this review, we comprehensively discussed the age-related changes of BM and EPCs and their implication for cardiovascular cell-therapies. Finally, we examined alternative approaches under investigation to enhance EPC potency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2016.04.002DOI Listing

Publication Analysis

Top Keywords

cell therapy
8
ageing implication
4
implication cell
4
epcs
4
therapy epcs
4
epcs bone
4
bone marrow
4
marrow well-recognized
4
well-recognized source
4
source stem/progenitor
4

Similar Publications

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Background: In the case of end-stage hallux rigidus, first metatarsophalangeal (MTP) joint arthrodesis is the gold-standard and is traditionally performed via an open approach. However, complications such as nonunion have been reported to be as high as 30%. Recently, there have been reports demonstrating a percutaneous approach to be effective and safe.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!