To characterize the impact of influent loading on elemental sulfur (S) recovery during the denitrifying and sulfide oxidation process, three identical, lab-scale UASB reactors (30cm in length) were established in parallel under different influent acetate/nitrate/sulfide loadings, and the reactor performance and functional community structure were investigated. The highest S recovery was achieved at 77.9% when the acetate/nitrate/sulfide loading was set to 1.9/1.6/0.7kgdm. Under this condition, the genera Thauera, Sulfurimonas, and Azoarcus were predominant at 0-30, 0-10 and 20-30cm, respectively; meanwhile, the sqr gene was highly expressed at 0-30cm. However, as the influent loading was halved and doubled, S recovery was decreased to 27.9% and 45.1%, respectively. As the loading was halved, the bacterial distribution became heterogeneous, and certain autotrophic sulfide oxidation genera, such as Thiobacillus, dominated, especially at 20-30cm. As the loading doubled, the bacterial distribution was relatively homogeneous with Thauera and Azoarcus being predominant, and the nirK and sox genes were highly expressed. The study verified the importance of influent loading to regulate S recovery, which could be achieved as Thauera and Sulfurimonas dominated. An influent loading that was too low or too high gave rise to insufficient oxidation or over-oxidation of the sulfide and low S recovery performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2016.03.024 | DOI Listing |
J Environ Manage
January 2025
School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China.
In the process of partial nitrification and anaerobic ammonia oxidation (anammox) for nitrogen removal, the process offers simple metabolic pathways, low operating costs, and high nitrogenous loading rates. However, since the partial nitrification-anammox (PN-anammox) process combines partial nitrification and anammox reactions within the same reactor, strict control of dissolved oxygen (DO) is essential. Additionally, assessing treatment performance through chemical measurement involves time lag, making it challenging to recover the biological process when issue arise, especially in the PN-anammox process, where strict DO control and the sensitivity of anammox bacteria to conditions and substrates demand timely intervention.
View Article and Find Full Text PDFMembranes (Basel)
November 2024
Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic retention time (HRT), solid retention time (SRT), and the N/P ratio of influent on the biological performance of M-MPBRs, such as microalgal biomass production and nutrient (N and P) removals.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.
An open-source modeling platform, called Anaerobic Digestion Model No. 1 Fast (ADM1F), is introduced to achieve fast and numerically stable simulations of anaerobic digestion processes. ADM1F is compatible with an iPython interface to facilitate model configuration, simulation, data analysis, and visualization.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China. Electronic address:
Heavy metal pollution in urban rivers has become a global issue. In this study, hybrid constructed wetlands (HCWs) were used to comprehensively evaluate the effectiveness of field wetland projects in removing heavy metals, with evaluation metrics including seasonal variations, plant contributions, and structure compositions. The experimental results showed that the synergistic system of root-microorganism-substrate formed in the combined process well realized the high efficiency of heavy metal removal, in which the removal rate in the warm season was higher than that in the cold season.
View Article and Find Full Text PDFWater Sci Technol
December 2024
Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Anaerobic treatment of sulfur-rich wastewater is challenging because sulfide greatly inhibits the activity of anaerobic microorganisms, especially methanogenic archaea. We developed an internal phase-separated reactor (IPSR) that removed sulfide prior to methanogenesis by gas stripping using biogas produced in the reactor. The IPSR was fed with synthetic wastewater containing a very high sulfide concentration of up to 6,000 mg S L with a chemical oxygen demand (COD) of 30,000 mg L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!