Background And Aims: Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled.
Methods: Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production.
Key Results: About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions.
Conclusions: The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen-ovule recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866313 | PMC |
http://dx.doi.org/10.1093/aob/mcw026 | DOI Listing |
Insects
January 2025
Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Comparative Veterinary Medicine, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium.
The increasing reliance of modern agriculture on honey bee () pollination has driven efforts to preserve and enhance bee populations. The cryopreservation of drone semen presents a promising solution for preserving genetic diversity and supporting breeding programs without live animal transport risks. This study aimed to evaluate a one-step dilution antibiotic-free drone semen slow-freezing protocol under field conditions with in vitro and in vivo parameters.
View Article and Find Full Text PDFJ Econ Entomol
November 2024
Department of Horticulture, Washington State University, Northwestern Washington Research and Extension Center, Mount Vernon, WA, USA.
Commercial blueberry Vaccinium spp. (Ericales: Ericaceae) production relies on insect-mediated pollination. Pollination is mostly provided by rented honey bees, Apis mellifera L.
View Article and Find Full Text PDFPhysiol Plant
September 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
Physiological seed drop is a recognized phenomenon in economic forest, caused by the abscission of developing seeds due to intergroup competition for resources. However, little is known about the resource allocation dynamics in species exhibiting a biennial fruiting cycle, where interactions occur not only among seeds of the same year but also between reproductive structures from consecutive years. In this study, we explored the dynamics of resource allocation in Torreya grandis, a nut crop with a prototypical two-year seed development pattern.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality.
View Article and Find Full Text PDFJ Exp Bot
June 2024
Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata of Rende (Cosenza), Italy.
In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!