Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27(kip1) and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4(+) T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2016.04.001 | DOI Listing |
Biochem Biophys Res Commun
May 2016
Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan. Electronic address:
Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27(kip1) and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!