Computational modelling of placental amino acid transfer as an integrated system.

Biochim Biophys Acta

Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK. Electronic address:

Published: July 2016

Placental amino acid transfer is essential for fetal development and its impairment is associated with poor fetal growth. Amino acid transfer is mediated by a broad array of specific plasma membrane transporters with overlapping substrate specificity. However, it is not fully understood how these different transporters work together to mediate net flux across the placenta. Therefore the aim of this study was to develop a new computational model to describe how human placental amino acid transfer functions as an integrated system. Amino acid transfer from mother to fetus requires transport across the two plasma membranes of the placental syncytiotrophoblast, each of which contains a distinct complement of transporter proteins. A compartmental modelling approach was combined with a carrier based modelling framework to represent the kinetics of the individual accumulative, exchange and facilitative classes of transporters on each plasma membrane. The model successfully captured the principal features of transplacental transfer. Modelling results clearly demonstrate how modulating transporter activity and conditions such as phenylketonuria, can increase the transfer of certain groups of amino acids, but that this comes at the cost of decreasing the transfer of others, which has implications for developing clinical treatment options in the placenta and other transporting epithelia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884669PMC
http://dx.doi.org/10.1016/j.bbamem.2016.03.028DOI Listing

Publication Analysis

Top Keywords

amino acid
20
acid transfer
20
placental amino
12
transfer
8
integrated system
8
plasma membrane
8
amino
6
acid
5
computational modelling
4
placental
4

Similar Publications

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

Copper-Catalyzed Successive Radical Reactions of Glycine Derivatives.

Org Lett

January 2025

Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

Here, we present a three-component successive radical addition strategy for the preparation of complex noncanonical α-amino acids from easily available glycine derivatives, alkenes, and aryl sulfonium salts via a copper-catalyzed photoredox-neutral catalytic cycle. The utility of this method is further demonstrated by its application in late-stage site-selective modifications of glycine residues in short peptides. It is worth noting that only 1 mol % copper catalyst is required in this reaction, demonstrating high catalytic efficiency.

View Article and Find Full Text PDF

Defining metabolic health is critical for the earlier reversing of metabolic dysfunction and disease, and fasting-based diagnosis may not adequately assess an individual's metabolic adaptivity under stress. We constructed a novel Health State Map (HSM) comprising a Health Phenotype Score (HPS) with fasting features alone and a Homeostatic Resilience Score (HRS) with five time-point features only ( = 30, 60, 90, 180, 240 min) following a standardized mixed macronutrient tolerance test (MMTT). Among 111 Chinese adults, when the same set of fasting and post-MMTT data as for the HSM was used, the mixed-score was highly correlated with the HPS.

View Article and Find Full Text PDF

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!