Download full-text PDF |
Source |
---|
J Sci Food Agric
March 2025
Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja), Universidad de La Rioja, Departamento de Viticultura, Logroño, Spain.
Background: Applying organic amendments to vineyard soil improves soil properties and vine development by increasing soil water retention and nutrient content. However, little is known about how organic mulches modify grapevine phenolic composition. This study analysed the phenolic profile in the leaves, canes, and grape skins of Tempranillo over 3 years in two vineyard locations with three organic mulches: spent mushroom compost (SMC), grapevine pruning debris (GPD) and straw (STR), as well as two conventional soil practices: herbicide (HERB) and tillage (TILL).
View Article and Find Full Text PDFPhytochem Anal
March 2025
Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
Introduction: Pine needles are a rich source of bioactive compounds, and there are few reports on the extraction and identification of active substances in various types of pine needles.
Objectives: The objective of this study is to enhance the efficiency and yield of pine needle essential oil extraction by employing an innovative ultrasonic-assisted salt-out hydrodistillation technology. It also aims to establish a correlation between gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) to distinguish essential oils from Cedrus deodara, Pinus thunbergii, Pinus massoniana, and Pinus koraiensis.
Environ Technol
March 2025
Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China.
The structural and abundance changes in water disinfected by tea polyphenols were investigated in high-abundance microbial communities (HAMC), medium-abundance microbial communities (MAMC), and low-abundance microbial communities (LAMC), also included the interactions within and between these communities. The antibacterial effect of tea polyphenols was observed at concentrations of 20-300 mg/L. If the tea polyphenols concentration is greater than or equal to 200 mg/L, it can continue to inhibit the growth of bacteria, and keep the total number of bacteria in 48 hours no more than100 CFU/ml, and this reflected the continuity of tea polyphenols disinfectant in the pipe network.
View Article and Find Full Text PDFSmall
March 2025
Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.
Perovskite solar cells (PSCs) are emerging photovoltaic devices renowned for their high efficiency and low cost. Efficient and stable PSCs depend on high-quality perovskite films, which are strongly influenced by the excellent nucleation and growth. The choice of solvent is critical for the crystallization behavior of perovskite films.
View Article and Find Full Text PDFAdv Mater
March 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) experience a notable reduction in efficiency within the 280-330 nm wavelength range, known as the "UVB gap". Given the extensive applications of UV LEDs in this wavelength range, it is imperative to bridge this efficiency gap. In this study, a strategy facilitated by the presence of residual Al adatoms is introduced to simultaneously improve the integration of Ga-adatoms and the migration of Al/Ga-adatoms during the growth of low-Al-composition AlGaN quantum wells (QWs) even at high temperatures comparable to those used for high-Al-composition AlGaN quantum barriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!