Two blue mussel lineages of Pliocene origin, Mytilus edulis (ME) and M. trossulus (MT), co-occur and hybridize in several regions on the shores of the North Atlantic. The two species were distinguished from each other by molecular methods in the 1980s, and a large amount of comparative data on them has been accumulated since that time. However, while ME and MT are now routinely distinguished by various genetic markers, they tend to be overlooked in ecological studies since morphological characters for taxonomic identification have been lacking, and no consistent habitat differences between lineages have been reported. Surveying a recently discovered area of ME and MT co-occurrence in the White Sea and employing a set of allozyme markers for identification, we address the issue whether ME and MT are true biological species with distinct ecological characteristics or just virtual genetic entities with no matching morphological and ecological identities. We find that: (1) in the White Sea, the occurrence of MT is largely concentrated in harbors, in line with observations from other subarctic regions of Europe; (2) mixed populations of ME and MT are always dominated by purebred individuals, animals classified as hybrids constituting only ca. 18%; (3) in terms of shell morphology, 80% of MT bear a distinct uninterrupted dark prismatic strip under the ligament while 97% of ME lack this character; (4) at sites of sympatry MT is more common on algal substrates while ME mostly lives directly on the bottom. This segregation by the substrate may contribute to maintaining reproductive isolation and decreasing competition between taxa. We conclude that while ME and MT are not fully reproductively isolated, they do represent clearly distinguishable biological, ecological and morphological entities in the White Sea. It remains to be documented whether the observed morphological and ecological differences are of a local character, or whether they have simply been overlooked in other contact zones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820271PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152963PLOS

Publication Analysis

Top Keywords

white sea
16
ecological morphological
8
morphological ecological
8
morphological
5
ecological
5
genetic ecological
4
morphological distinctness
4
distinctness blue
4
blue mussels
4
mussels mytilus
4

Similar Publications

Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within through mitochondrial ( and genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data.

View Article and Find Full Text PDF

We analyze the relationship between geothermal energy production and seismic hazards in the Salton Sea Geothermal Field (SSGF) between 1972 and 2022. A clear increase in seismic activity accompanies geothermal energy production and is greatest to the east of the Brawley fault, where the amount of injection exceeds the amount of production. We estimate that, whereas there was a 2% chance of a M6.

View Article and Find Full Text PDF

Microplastics in the surface waters of the northern South China Sea: Interannual variation and potential ecological risks.

Mar Environ Res

January 2025

South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.

Microplastic pollution in marine environments has become a global concern due to its potential ecological risks. However, long-term data on microplastic distribution are scare, hindering the assessment of the ecological threats. This study monitored microplastics pollution in the surface water of the northern South China Sea from 2019 to 2023.

View Article and Find Full Text PDF

Purpose Of Review: Arboviral infections caused by Dengue, Zika, and Chikungunya viruses continue to pose a significant global health threat, particularly in endemic regions. This review is timely because of the increasing prevalence of these infections, driven by factors such as urbanization and climate change. Dermatological manifestations of these viruses are crucial for early diagnosis, especially given the overlap in symptoms, which can complicate differential diagnosis.

View Article and Find Full Text PDF

Rapid and accurate multi-phenotype imputation for millions of individuals.

Nat Commun

January 2025

Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.

Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been developed, the accurate imputation of millions of individuals remains challenging. In the present study, we have developed a multi-phenotype imputation method based on mixed fast random forest (PIXANT) by leveraging efficient machine learning (ML)-based algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!