This work describes the synthesis of a series of quaternary ammonium salts and the assessment of their in vitro antileishmanial activity and cytotoxicity. A preliminary discussion on a structure-activity relationship of the compounds is also included. Three series of quaternary ammonium salts were prepared: (i) halomethylated quaternary ammonium salts (series I); (ii) non-halogenated quaternary ammonium salts (series II) and (iii) halomethylated choline analogs (series III). Assessments of their in vitro cytotoxicity in human promonocytic cells U-937 and antileishmanial activity in axenic amastigotes of L. (Viannia) panamensis (M/HOM/87/UA140-pIR-eGFP) were carried out using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) micromethod. Antileishmanial activity was also tested in intracellular amastigotes of L. (V) panamensis using flow cytometry. High toxicity for human U937 cells was found with most of the compounds, which exhibited Lethal Concentration 50 (LC50) values in the range of 9 to 46 μg/mL. Most of the compounds evidenced antileishmanial activity. In axenic amastigotes, the antileishmanial activity varied from 14 to 57 μg/mL, while in intracellular amastigotes their activity varied from 17 to 50 μg/mL. N-Chloromethyl-N,N-dimethyl-N-(4,4-diphenylbut-3-en-1-yl)ammonium iodide (1a), N-iodomethyl-N,N-dimethyl-N-(4,4-diphenylbut-3-en-1-yl)ammonium iodide (2a), N,N,N-trimethyl-N-(4,4-diphenylbut-3-en-1-yl)ammonium iodide (3a) and N,N,N-trimethyl-N-(5,5-diphenylpent-4-en-1-yl)ammonium iodide (3b) turned out to be the most active compounds against intracellular amastigotes of L. (V) panamensis, with EC50 values varying between 24.7 for compound 3b and 38.4 μg/mL for compound 1a. Thus, these compounds represents new "hits" in the development of leishmanicidal drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273649PMC
http://dx.doi.org/10.3390/molecules21040381DOI Listing

Publication Analysis

Top Keywords

antileishmanial activity
24
quaternary ammonium
20
ammonium salts
20
intracellular amastigotes
12
vitro antileishmanial
8
series quaternary
8
salts series
8
series iii
8
activity axenic
8
axenic amastigotes
8

Similar Publications

Visceral leishmaniasis (VL) is an opportunistic infection in HIV patients with higher relapse and mortality rate. The number of HIV-VL patients is comparatively higher in areas where both infections are endemic. However, the conventional chemotherapeutic agents have limited success due to drug toxicity, efficacy variance and overall cost of treatment.

View Article and Find Full Text PDF

Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy.

Molecules

January 2025

Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru.

Leishmaniasis, a neglected tropical disease caused by species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against , , and , comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species.

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

Leishmaniasis, caused by protozoa of the genus , is a major global health issue due to the limitations of current treatments, which include low efficacy, high costs, and severe side effects. This study aimed to develop a more effective and less toxic therapy by utilizing zein nanoparticles (ZNPs) in combination with a nonpolar fraction (DCMF) from (Syn. ), a plant rich in dimeric flavonoids called brachydins.

View Article and Find Full Text PDF

Sulfonamide drugs were the original class of antibiotics, demonstrating the antibacterial potential of dithiocarbazate and thiosemicarbazone Schiff base derivatives of syringaldehyde and 4-hydroxy-3,5-dimethylbenzaldehyde. We synthesized unique Schiff bases via the condensation of the aldehydes with hydrazine derivatives, which allows for the easy synthesis of several related compounds. These Schiff base derivatives were tested for antileishmanial properties against the parasitic protozoan .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!