Genetic characterisation of PPARG, CEBPA and RXRA, and their influence on meat quality traits in cattle.

J Anim Sci Technol

Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET), CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CC 296, La Plata, B1900AVW Argentina.

Published: April 2016

Background: Peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer binding protein alpha (CEBPA) and retinoid X receptor alpha (RXRA) are nuclear transcription factors that play important roles in regulation of adipogenesis and fat deposition. The objectives of this study were to characterise the variability of these three candidate genes in a mixed sample panel composed of several cattle breeds with different meat quality, validate single nucleotide polymorphisms (SNPs) in a local crossbred population (Angus - Hereford - Limousin) and evaluate their effects on meat quality traits (backfat thickness, intramuscular fat content and fatty acid composition), supporting the association tests with bioinformatic predictive studies.

Results: Globally, nine SNPs were detected in the PPARG and CEBPA genes within our mixed panel, including a novel SNP in the latter. Three of these nine, along with seven other SNPs selected from the Single Nucleotide Polymorphism database (SNPdb), including SNPs in the RXRA gene, were validated in the crossbred population (N = 260). After validation, five of these SNPs were evaluated for genotype effects on fatty acid content and composition. Significant effects were observed on backfat thickness and different fatty acid contents (P < 0.05). Some of these SNPs caused slight differences in mRNA structure stability and/or putative binding sites for proteins.

Conclusions: PPARG and CEBPA showed low to moderate variability in our sample panel. Variations in these genes, along with RXRA, may explain part of the genetic variation in fat content and composition. Our results may contribute to knowledge about genetic variation in meat quality traits in cattle and should be evaluated in larger independent populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818460PMC
http://dx.doi.org/10.1186/s40781-016-0095-3DOI Listing

Publication Analysis

Top Keywords

meat quality
12
fatty acid
12
pparg cebpa
8
quality traits
8
genes mixed
8
single nucleotide
8
crossbred population
8
backfat thickness
8
snps
5
genetic characterisation
4

Similar Publications

AKG/OXGR1 promotes skeletal muscle blood flow and metabolism by relaxing vascular smooth muscle.

Life Metab

December 2022

Guangdong Laboratory for Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, South China Animal Nutrition and Feed Science Observation and Experimental Station, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China.

In response to contraction during exercise, skeletal muscle growth and metabolism are dynamically regulated by nerve action, blood flow, and metabolic feedback. -Ketoglutarate (AKG), a bioactive intermediate in the tricarboxylic acid cycle released during exercise, has been shown to promote skeletal muscle hypertrophy. However, the underlying mechanism of AKG in regulating skeletal muscle development and metabolism is still less known.

View Article and Find Full Text PDF

The objective of this study was to investigate the water-holding capacity (WHC) and quality changes of beef during heating at specific temperatures (including 40 °C, 60 °C, 80 °C, and 100 °C), as well as the degradation of proteins and the distribution of water within the muscle at different heating temperatures. The experiment utilized the sirloin section from eight crossbred cattle of and breeds, with four sampling sessions, two cattle per session. Each cattle were divided into 30 beef sirloin samples, each weighing 150 ± 10 g, and each session was completed within 3 days with the following tests.

View Article and Find Full Text PDF

Integrating Metal-Organic Framework Hybrid into Nucleic Acid-Based Hydrogel for Highly Selective Recognition and Sensitive Detection of Sarafloxacin.

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi 214122, China.

Metal-organic framework-based hybrids (MOFzyme) have promising applications in colorimetric aptasensors due to their highly efficient and stable catalytic activity. However, their efficient application in biosensors remains a challenging issue due to the limited reaction site and amorphous structure. Herein, we encapsulated catalase inside MOF cavities to prepare an MOFzyme with many functional groups on its surface, and the functional groups were utilized for the subsequent integration of MOFzyme into the hyaluronic acid-DNA hydrogel.

View Article and Find Full Text PDF

Background: This study aimed to investigate associations between sociodemographic factors and dietary intake among a diverse population of early adolescents ages 10-13 years in the United States.

Methods: We examined data from the Adolescent Brain Cognitive Development (ABCD) Study in Year 2 (2018-2020, ages 10-13 years, N = 10,280). Multivariable linear regression models were conducted to estimate the adjusted associations between sociodemographic factors (age, sex, race and ethnicity, household income, parental education) and dietary intake of various food groups, measured by the Block Kids Food Screener.

View Article and Find Full Text PDF

Preparation, characterization, and application of composite oleogels based on whey protein isolate and sodium alginate.

Int J Biol Macromol

January 2025

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China. Electronic address:

Oleogels with solid-like properties can serve as substitutes for fats, thereby avoiding the consumption of high levels of saturated fatty acids. In this study, we developed a protein-polysaccharide composite network oleogel using whey protein isolate (WPI) and sodium alginate (SA) through an emulsion-templated method. Analysis with Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydrogen bonds and van der Waals forces between WPI and SA, which bolstered the oleogel's structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!