Exploring the environmental drivers of waterfowl movement in arid landscapes using first-passage time analysis.

Mov Ecol

Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town 7701 South Africa ; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia.

Published: April 2016

Background: The movement patterns of many southern African waterfowl are typified by nomadism, which is thought to be a response to unpredictable changes in resource distributions. Nomadism and the related movement choices that waterfowl make in arid environments are, however, poorly understood. Tracking multiple individuals across wide spatiotemporal gradients offers one approach to elucidating the cues and mechanisms underpinning movement decisions. We used first-passage time (FPT) to analyse high spatial and temporal resolution telemetry data for Red-billed Teal and Egyptian Geese across a 1500 km geographical gradient between 2008 and 2014. We tested the importance of several environmental variables in structuring movement patterns, focusing on two competing hypotheses: (1) whether movements are driven by resource conditions during the current period of habitat occupation (reactive movement hypothesis), or (2) whether movements are structured by shifts in the magnitude and direction of environmental variables at locations prior to occupation (prescient movement hypothesis).

Results: An increase in rainfall at a 32 day lag (i.e., prior to wetland occupancy), along with tagging site, were significant predictors of FPT in both waterfowl species. There was a positive relationship between NDVI and FPT for Egyptian Geese during this 32 day period; the relationship was negative for Red-billed Teal. Consistent with findings for migratory grazing geese, Egyptian Geese prioritised food quality over food biomass. Red-billed Teal showed few immediate responses to wetland filling, contrary to what one would predict for a dabbling duck, suggesting high dietary flexibility. Our results were consistent with the prescient movement hypothesis.

Conclusions: Using FPT analysis we showed that the proximate drivers of southern African waterfowl movement are the dynamics of rainfall and primary productivity. Waterfowl appeared to be able to perceive and respond to temporal shifts in resource conditions prior to habitat patch occupation. This in turn suggests that their movements in semi-arid landscapes may be underpinned by intimate knowledge of the local environment; waterfowl pursue a complex behavioural strategy, locating suitable habitat patches proactively, rather than acting as passive respondents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818463PMC
http://dx.doi.org/10.1186/s40462-016-0073-xDOI Listing

Publication Analysis

Top Keywords

red-billed teal
12
egyptian geese
12
movement
9
waterfowl movement
8
first-passage time
8
movement patterns
8
southern african
8
african waterfowl
8
environmental variables
8
resource conditions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!