Tantalum oxide memristors can switch continuously from a low-conductance semiconducting to a high-conductance metallic state. At the boundary between these two regimes are quantized conductance states, which indicate the formation of a point contact within the oxide characterized by multistable conductance fluctuations and enlarged electronic noise. Here, we observe diverse conductance-dependent noise spectra, including a transition from 1/f(2) (activated transport) to 1/f (flicker noise) as a function of the frequency f, and a large peak in the noise amplitude at the conductance quantum GQ=2e(2)/h, in contrast to suppressed noise at the conductance quantum observed in other systems. We model the stochastic behaviour near the point contact regime using Molecular Dynamics-Langevin simulations and understand the observed frequency-dependent noise behaviour in terms of thermally activated atomic-scale fluctuations that make and break a quantum conductance channel. These results provide insights into switching mechanisms and guidance to device operating ranges for different applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822004 | PMC |
http://dx.doi.org/10.1038/ncomms11142 | DOI Listing |
Phys Rev E
November 2024
Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-972, Brazil.
The ultimate goal of this paper is to develop a systematic method for deriving quantum master equations that satisfy the requirements of a completely positive and trace-preserving (CPTP) map, further describing thermal relaxation processes. In this paper, we assume that the quantum master equation is obtained through the canonical quantization of the generalized Brownian motion proposed in our recent paper [T. Koide and F.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Computational Nanoelectronics Group, University of Zagreb Faculty of Electrical Engineering and Computing, HR 10000 Zagreb, Croatia.
The problems of disorder and insufficient system length are generally regarded as central problems in the realization of Majorana zero modes (MZM), which are a promising platform for realizing fault-tolerant topological quantum computing (TQC). In this work, we analyze eigenenergy spectra and transport properties of finite Kitaev chains using quantum transport simulations in a wide design space of hopping amplitude (), superconductor pairing (Δ), and electrochemical potential. Our goal is to determine critical or minimum acceptable chain lengths to obtain oscillation-free MZMs with suitable microsecond coherence times, and observable zero-bias conductance peaks (ZBCP) quantized almost at ~2/.
View Article and Find Full Text PDFChem Soc Rev
December 2024
School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology.
View Article and Find Full Text PDFNeural Netw
December 2024
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
EEG signal analysis can be used to study brain activity and the function and structure of neural networks, helping to understand neural mechanisms such as cognition, emotion, and behavior. EEG-based auditory attention detection is using EEG signals to determine an individual's level of attention to specific auditory stimuli. In this technique, researchers record and analyze a subject's electrical activity to infer whether an individual is paying attention to a specific auditory stimulus.
View Article and Find Full Text PDFSci Bull (Beijing)
November 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!