Morphological and molecular genetic diversity of Strongyluris calotis (Nematoda: Ascaridida: Heterakidae) in South East and East Asian lizards.

Parasitol Res

Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.

Published: July 2016

Strongyluris calotis is a heterakid nematode in the large intestine of agamid lizards (Reptilia: Sauria: Agamidae) from the Oriental Region. The standard light microscopic definition of the species counts the "caudal papillae" as 10 pairs on male worms. However, previous work from our group using scanning electron microscopy (SEM) on the heterakid from agamid lizards in Japan, Taiwan, and Singapore revealed that this counting contained a pair of phasmids and that two pairs of postcloacal papillae were completely fused to form a pair of united papillae, thus resulting in "10 pairs." In the present study, we examined S. calotis specimens from the Emma Gray's forest lizard, Calotes emma (Agamidae), living in the plain forest at low altitude, and the Vietnam false bloodsucker, Pseudocalotes brevipes (Agamidae), living in the mountainous forest at high altitude in the northern part of Vietnam. Using SEM, the arrangement of caudal papillae in male worms from an Emma Gray's forest lizard was found to be comparable to classical S. calotis specimens from agamid lizards collected in Japan, Taiwan, and Singapore. However, male worms from Vietnam false bloodsuckers did not have a pair of united papillae but had 10 pairs of independent caudal papillae with a pair of phasmids. Molecular genetic analyses of the ribosomal RNA gene (rDNA) of worms of the classical S. calotis morphotype from Japan and Singapore and two S. calotis morphotypes from Vietnam demonstrated absolutely identical nucleotide sequences of partial 18S rDNA (at least 1764 base pairs (bp)) and 5.8S rDNA (158 bp). However, intraspecific differences were detected in other regions of the rDNA, related to the geographical distribution of hosts regardless of morphotype: 97.8-98.5 % identity (443-446 bp/453 bp) in the internal transcribed spacer (ITS)-1 region, 96.6-98.0 % identity (425-431 bp/440 bp) in the ITS-2 region, and 99.6-99.7 % identity (1149-1151 bp/1154 bp) in the 28S rDNA. Thus, in the future, taxonomic relationships of S. calotis distributed widely in the Oriental Region as well as other nominal Oriental Strongyluris spp., currently six in number, need to be extensively explored based on molecular genetic analyses in addition to intensive morphological characterization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-016-5030-5DOI Listing

Publication Analysis

Top Keywords

molecular genetic
12
agamid lizards
12
male worms
12
strongyluris calotis
8
oriental region
8
japan taiwan
8
taiwan singapore
8
pair phasmids
8
pair united
8
united papillae
8

Similar Publications

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

In 2018, Portuguese researchers proposed the "Tool for Quality Assessment of Genetic Counseling," a 5-point Likert scale comprising 50 items across five dimensions, designed to assess genetic counseling from the professional's perspective. This descriptive, cross-sectional study aimed to adapt this tool to Brazilian Portuguese, validate it among Brazilian clinical geneticists, and conduct a preliminary assessment of the quality of genetic counseling in Brazil. The adaptation process involved expert-driven content validation and calculation of the Content Validity Index (CVI) to ensure equivalence between the original and adapted versions.

View Article and Find Full Text PDF

Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications.

World J Microbiol Biotechnol

January 2025

Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.

Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!