The aim of this study was to evaluate the potential of twin screw granulation for the continuous production of controlled release formulations with hydroxypropylmethylcellulose as hydrophilic matrix former. Metoprolol tartrate was included in the formulation as very water soluble model drug. A premix of metoprolol tartrate, hydroxypropylmethylcellulose and filler (ratio 20/20/60, w/w) was granulated with demineralized water via twin screw granulation. After oven drying and milling, tablets were produced on a rotary Modul™ P tablet press. A D-optimal design (29 experiments) was used to assess the influence of process (screw speed, throughput, barrel temperature and screw design) and formulation parameters (starch content of the filler) on the process (torque), granule (size distribution, shape, friability, density) and tablet (hardness, friability and dissolution) critical quality attributes. The torque was dominated by the number of kneading elements and throughput, whereas screw speed and filling degree only showed a minor influence on torque. Addition of screw mixing elements after a block of kneading elements improved the yield of the process before milling as it resulted in less oversized granules and also after milling as less fines were present. Temperature was also an important parameter to optimize as a higher temperature yielded less fines and positively influenced the aspect ratio. The shape of hydroxypropylmethylcellulose granules was comparable to that of immediate release formulations. Tensile strength and friability of tablets were not dependent on the process parameters. The use of starch as filler was not beneficial with regard to granule and tablet properties. Complete drug release was obtained after 16-20h and was independent of the design's parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.03.058 | DOI Listing |
Foods
January 2025
Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea.
According to the concept of smart postharvest management, an information and communication technology sensor-based monitoring system is required in the juicing process to reduce losses and improve process efficiency. Such technologies are considered economically burdensome and technically challenging for small-scale enterprises to adopt. From this perspective, this study aimed to develop a smart monitoring system for the juicing processes in small-scale enterprises and to identify the optimal operating conditions based on the monitoring data.
View Article and Find Full Text PDFScientificWorldJournal
January 2025
Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq.
While polyethylene terephthalate glycol (PETG) is widely used in orthodontic appliances such as clear aligners and retainers, there is limited experimental data assessing its performance under functional stresses, such as those encountered during dental movements and palatal expansion. This study aims to evaluate the ability of PETG thermoplastic material to withstand deformation under functional and expansion forces, specifically within the context of orthodontic applications. To estimate the firmness of the screw within the appliance, a universal Instron testing machine was used to record the forces released by each activation of the expander within the upper part of 10 clear modified twin blocks (MTBs) made from PETG and compare it with that released by 10 conventional twin blocks (CTBs).
View Article and Find Full Text PDFFood Chem
January 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China. Electronic address:
Potato protein has attracted much attention due to its unique nutritional and structural properties. In this study, the twin-screw extrusion technology was employed to modify potato protein, while the modification mechanism was investigated from the perspective of temperature variation. Results indicated that extruded potato protein (EPP) led to the extremely significantly decreased surface hydrophobicity (1350 to 307-396) and foaming capacity (41.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Some one-dimensional (1D) crystals containing a screw dislocation along their longer axis exhibit a helical twist due to lattice strain. These chiral structures have been thoroughly investigated by using transmission electron microscopy. However, whether two-dimensional (2D) crystals with a spiral surface pattern, presumably containing a screw dislocation, are structurally chiral remains unclear because their internal structures are not visible.
View Article and Find Full Text PDFThis study investigates the nutritional and anti-nutrient profiles of extrudates produced from seven formulations of pearl millet and Bambara groundnut flour in seven different ratios: 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20, with 100% pearl millet and 100% Bambara groundnut extrudates used as controls. The extrudates were processed using a twin screw extruder and analyzed for their nutritional and anti-nutritional properties. The findings revealed a rising pattern in the content of fiber, moisture, protein, ash and fat as the substitution of Bambara groundnut increased in the extrudate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!