Neural network (NN) models were evaluated for the prediction of suspended particulates with aerodynamic diameter less than 10-μm (PM10) concentrations. The model evaluation work considered the sequential hourly concentration time series of PM10, which were measured at El Hamma station in Algiers. Artificial neural network models were developed using a combination of meteorological and time-scale as input variables. The results were rather satisfactory, with values of the coefficient of correlation (R (2)) for independent test sets ranging between 0.60 and 0.85 and values of the index of agreement (IA) between 0.87 and 0.96. In addition, the root mean square error (RMSE), the mean absolute error (MAE), the normalized mean squared error (NMSE), the absolute relative percentage error (ARPE), the fractional bias (FB), and the fractional variance (FS) were calculated to assess the performance of the model. It was seen that the overall performance of model 3 was better than models 1 and 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-6565-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!