A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property. | LitMetric

In this paper, we facilitated the preparation of uniform calcium carbonate nanospheres and the encapsulation of anticancer drug (Doxorubicin, Dox) in one step by a facile bio-inspired mineralization method at room temperature. Hesperidin (Hesp), a natural originated flavanone glycoside, was introduced as crystallization modifier. The obtained Dox encapsulated CaCO3 nanospheres (Dox@CaCO3-Hesp NSs) having a narrow size range of ~200 nm. The drug loading/release studies reveal that these Dox@CaCO3-Hesp NSs have a drug loading efficiency (DLE) of 83% and drug loading content (DLC) of 14wt%. Besides, the release of Dox from Dox@CaCO3-Hesp NSs was pH depended. At pH=7.4, only a small amount (~28%) of Dox was released. While at pH=5.0, all amount of incorporated Dox was released. Confocal laser scanning microscopy (CLSM) image reveals the Dox@CaCO3-Hesp NSs can internalize the cells. These results suggest the Dox@CaCO3-Hesp NSs can be potentially used to utilize pH-responsive delivery of anticancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.03.009DOI Listing

Publication Analysis

Top Keywords

dox@caco3-hesp nss
20
anticancer drug
8
calcium carbonate
8
drug loading
8
dox released
8
drug
5
dox
5
dox@caco3-hesp
5
nss
5
situ mineralization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!