A black phosphorous (BP)-based field-effect transistor (FET) biosensor was fabricated by using few-layer BP nanosheets labeled with gold nanoparticle-antibody conjugates. BP nanosheets were mechanically exfoliated and used as the sensing/conducting channel in the FET, with an AlO thin film as the dielectric layer for surface passivation. Antibody probes were conjugated with gold nanoparticles that were sputtered on the BP through surface functionalization. The sensor response was measured by the change in the BP's electrical resistance after antigens were introduced. The adsorbed antigens through specific antigen-antibody binding interactions induced a gate potential, thereby changing the drain-source current. The as-produced BP biosensor showed both high sensitivity (lower limit of detection ~10ng/ml) and selectivity towards human immunoglobulin G. Results from this study demonstrate the outstanding performance of BP as a sensing channel for FET biosensor applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2016.03.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!