Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications.

Acta Biomater

Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P(2) Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC) H3C 3A7, Canada; Institute of Biomedical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC) H3C 3A7, Canada. Electronic address:

Published: June 2016

Unlabelled: Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules. In the present study, a library of dextran-VS was produced, grafted to aminated substrates and characterized in terms of degree of VS modification (%VS), cell-repelling properties and potential for the oriented grafting of cysteine-tagged peptides. As a bioactive coating of vascular implants, ECM peptides (e.g. RGD) as well as vascular endothelial growth factor (VEGF) were co-immobilized on one of the most suitable dextran-VS coating (%VS=ca. 50% of saccharides units). Both RGD and VEGF were efficiently tethered at high densities (ca. 1nmol/cm(2) and 50fmol/cm(2), respectively), and were able to promote endothelial cell adhesion as well as proliferation. The latter was enhanced to the same extent as with soluble VEGF and proved selective to endothelial cells over smooth muscle cells. Altogether, multiple biomolecules could be efficiently incorporated into a dextran-VS construct, while maintaining their respective biological activity.

Statement Of Significance: This work addresses the need for multifunctional coatings and selective cell response inherent to many tissue engineering and regenerative medicine applications, for instance, vascular graft. More specifically, a library of dextrans was first generated through vinylsulfone (VS) modification. Thoroughly selected dextran-VS provided an ideal platform for unbiased study of cell response to covalently grafted biomolecules. Considering that processes such as healing and angiogenesis require multiple factors acting synergistically, vascular endothelial growth factor (VEGF) was then co-immobilized with the cell adhesive RGD peptide within our dextran coating through a relevant strategy featuring orientation and specificity. Altogether, both adhesive and proliferative cues could be incorporated into our construct with additive, if not synergetic, effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2016.03.043DOI Listing

Publication Analysis

Top Keywords

coating vascular
8
tissue engineering
8
engineering regenerative
8
regenerative medicine
8
medicine applications
8
vascular endothelial
8
endothelial growth
8
growth factor
8
factor vegf
8
vegf co-immobilized
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!