Optimization of a methamphetamine conjugate vaccine for antibody production in mice.

Int Immunopharmacol

InterveXion Therapeutics, LLC, 4301 W. Markham St., #831, Little Rock, AR 72205, USA; Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., #611, Little Rock, AR 72205, USA. Electronic address:

Published: June 2016

There are still no approved medications for treating patients who abuse methamphetamine. Active vaccines for treating abuse of nicotine and cocaine are in clinical studies, but have not proven effective seemingly due to inadequate anti-drug antibody production. The current studies aimed to optimize the composition, adjuvant and route of administration of a methamphetamine conjugate vaccine, ICKLH-SMO9, in mice with the goal of generating significantly higher antibody levels. A range of hapten epitope densities were compared, as were the adjuvants Alhydrogel and a new Toll-like receptor 4 (TLR4) agonist called GLA-SE. While methamphetamine hapten density did not strongly affect the antibody response, the adjuvant did. Glucopyranosyl lipid A in a stable oil-in-water emulsion (GLA-SE) produced much higher levels of antibody in response to immunization compared with Alhydrogel; immunization with GLA-SE also produced antibodies with higher affinities for methamphetamine. GLA-SE has been used in human studies of vaccines for influenza among others and like some other clinical TLR4 agonists, it is safe and elicits a strong immune response. GLA-SE adjuvanted vaccines are typically administered by intramuscular injection and this also proved effective in these mouse studies. Clinical studies of the ICKLH-SMO9 methamphetamine vaccine adjuvanted with GLA-SE have the potential for demonstrating efficacy by generating much higher levels of antibody than substance abuse vaccines that have unsuccessfully used aluminum-based adjuvants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851881PMC
http://dx.doi.org/10.1016/j.intimp.2016.03.028DOI Listing

Publication Analysis

Top Keywords

methamphetamine conjugate
8
conjugate vaccine
8
antibody production
8
clinical studies
8
generating higher
8
antibody response
8
gla-se produced
8
higher levels
8
levels antibody
8
antibody
6

Similar Publications

Polymer-based vaccines for substance use disorders: Targeting ketamine and methamphetamine with protein-free hyperbranched polyethyleneimine carriers.

Eur J Med Chem

January 2025

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:

Substance use disorders (SUDs) present a critical global health challenge, as current treatment options often prove insufficient, particularly for substances like ketamine and methamphetamine. In this study, we developed a novel immunotherapeutic strategy utilizing protein-free, polymer-based vaccines, with hyperbranched polyethylenimine (Hb-PEI) as a carrier to enhance immune specificity and remove the production of non-specific antibodies. Haptens for ketamine and methamphetamine were covalently conjugated to the Hb-PEI carrier, along with the Toll-like receptor (TLR) 7/8 agonist 1V209, to stimulate targeted humoral immune responses.

View Article and Find Full Text PDF

NanoMIP beacons with a co-operative binding mechanism for the all-in-one detection of methamphetamine aptamer complexes.

Biosens Bioelectron

January 2025

Forensic Research Institute (FORRI), School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, 3 Byrom Way, Liverpool, L3 3AF, UK. Electronic address:

Methamphetamine is a highly addictive stimulant with significant public health implications, necessitating the development of rapid, sensitive, and reliable detection methods. Traditional analytical techniques, though accurate, often involve complex sample preparation, expensive equipment, and lengthy analysis times. This study presents the design, synthesis, and application of nanoMIP beacons with a unique co-operative binding mechanism for the detection of methamphetamine.

View Article and Find Full Text PDF

A methamphetamine vaccine using short monoamine and diamine peptide linkers and poly-mannose.

Bioorg Med Chem

November 2024

Immunology Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, VIC 3021, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia. Electronic address:

Methamphetamine (METH) substance use disorder is a long-standing and ever-growing public health concern. Efforts to develop successful immunotherapies are ongoing with vaccines that generate strong antibody responses are an area of significant research interest. Herein, we describe the development of a METH Hapten conjugate vaccine comprised of either two short-length peptides as linkers and mannan as an immunogenic delivery carrier.

View Article and Find Full Text PDF
Article Synopsis
  • * A modified erythrocyte membrane (Ang-RBCm) was developed to carry resveratrol (RSV) using nanoparticles, enhancing delivery across the blood-brain barrier for better treatment of METH addiction.
  • * Experiments showed that Ang-RBCm@RSVNPs effectively reduced METH preference in mice and improved synaptic plasticity without causing any significant harm to tissues, indicating its potential as a promising treatment for METH addiction.
View Article and Find Full Text PDF

Synthetic cathinones represent one of the largest and most abused new psychoactive substance classes, and have been involved in numerous intoxications and fatalities worldwide. Methcathinone analogues like 3-methylmethcathinone (3-MMC), 3-chloromethcathinone (3-CMC), and 4-CMC currently constitute most of synthetic cathinone seizures in Europe. Documenting their consumption in clinical/forensic casework is therefore essential to tackle this trend.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!