Preferential processing of emotionally and self-relevant stimuli persists in unconscious N2 sleep.

Brain Lang

University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria. Electronic address:

Published: April 2017

Information processing has been suggested to depend on the current state of the brain as well as stimulus characteristics (e.g. salience). We compared processing of salient stimuli (subject's own names [SONs] and angry voice [AV] stimuli) to processing of unfamiliar names (UNs) and neutral voice (NV) stimuli across different vigilance stages (i.e. wakefulness as well as sleep stages N1 and N2) by means of event-related oscillatory responses during wakefulness and a subsequent afternoon nap. Our findings suggest that emotional prosody and self-relevance drew more attentional resources during wakefulness with specifically AV stimuli being processed more strongly. During N1, SONs were more arousing than UNs irrespective of prosody. Moreover, emotional and self-relevant stimuli evoked stronger responses also during N2 sleep suggesting a 'sentinel processing mode' of the brain during this state of naturally occurring unconsciousness. Finally, this initial preferential processing of salient stimuli during N2 sleep seems to be followed by an inhibitory sleep-protecting process, which is reflected by a K-complex-like response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bandl.2016.02.004DOI Listing

Publication Analysis

Top Keywords

preferential processing
8
self-relevant stimuli
8
processing salient
8
salient stimuli
8
stimuli
7
processing
5
processing emotionally
4
emotionally self-relevant
4
stimuli persists
4
persists unconscious
4

Similar Publications

A protocol for the investigation of the intramolecular vibrational energy redistribution problem: the isomerization of nitrous acid as a case of study.

Phys Chem Chem Phys

January 2025

Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, 05508-900, Brazil.

The conformational isomerization of nitrous acid (HONO) promoted by excitation of the or stretching normal coordinates is the first observed case of an infrared-induced photochemical reaction. The energy captured by the excited normal modes is redistributed into a highly excited vibrational level of the torsion normal coordinate, which is the isomerization reaction coordinate. Herein, we present simple numerical methods to qualitatively investigate the coupling between the normal coordinates and the possible gateways for vibrational energy redistribution leading to the isomerization process.

View Article and Find Full Text PDF

Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.

View Article and Find Full Text PDF

Targeted Docking of Localized Hydrogen Bond for Efficient and Reversible Zinc-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Central South University, material science and engineering, 932 Lushan Road, 410083, Changsha, CHINA.

Hydrogen bond (HB) chemistry, a pivotal feature of aqueous zinc-ion batteries, modulates electrochemical processes through weak electrostatic interactions among water molecules. However, significant challenges persist, including sluggish desolvation kinetics and inescapable parasitic reactions at the electrolyte-electrode interface, associated with high water activity and strong Zn2+-solvent coordination. Herein, a targeted localized HB docking mechanism is activated by the polyhydroxy hexitol-based electrolyte, optimizing Zn2+ solvation structures via dipole interaction and reconstructing interfacial HB networks through preferential parallel adsorption.

View Article and Find Full Text PDF

Hydrogen sulfide (HS), the third endogenous gaseous molecule, plays a crucial role in biological signaling and metabolic processes. It has garnered significant attention from researchers in the field of biochemistry. The highly sensitive detection of HS is essential for elucidating its functions and has long been a key objective in biochemical sensing.

View Article and Find Full Text PDF

Background: The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!