Epidemiological studies presented evidence that Alzheimer's disease and type 2 diabetes share common features in their pathophysiology and clinical patterns. Insulin resistance is a characteristic feature of both diseases. According to the pathomechanism, inflammatory, metabolic, and an atypical form based on the deficiency of zinc ions can be distinguished. Glucose metabolic disorders, related to Alzheimer's disease, are type 2 diabetes, and prediabetes/metabolic syndrome. Based on the common pathophysiological patterns of these two diseases, Alzheimer's disease is customary called type 3 diabetes. In the research on dementias, insulin resistance stands in the highlight for its documented harmful effects on cognitive function and causes dementia. Insulin-like growth factor also influences cognitive functions. Reduced input of this hormone into the brain may also cause dementia, however literary data are controversial. In Alzheimer's disease, deposition of amyloid ß in the brain, hyperphosphorylation of tau proteins and dysruption of neurofibrilles are characteristic. Amyloid ß is co-secreted in the ß-cells of the pancreas with insulin. Amyloid ß and hyperphosphorylated tau protein were detected in the Langerhans islets by autopsy. Amyloid deposits, found in the pancreas and brain presented similarities. As a consequence of hyperglycemia, glycation endproducts cause the development of amyloid plaques, dysruption of neurofibrilles, and activated microglia, all are typical to Alzheimer's disease. Continuous hyperglycemia leads to oxidative stress, which used to play significant role in the development of both diseases. Low-grade inflammation is also a significant pathophysiological factor in both disorders. The sources of inflammation are proinflammatorical adipocytokines, dysbacteriosis, metabolic endotoxaemia, caused by lipopolysaccharides, and high fat diet which also lead to insulin resistance. Based on recent data, microbial amyloid, the main product of bacteria, is also contributing to the pathophysiology of the human central nervous system. Alzheimer's disease is a heterogeneous disorder, and as yet there is no effective therapy. Encouraging results have emerged by using intranasal insulin spray. Insulin sensitizers like metformin, thiazolidines have also resulted in improvements in cognitive functions, mainly in animal experiments. Glucagon-like peptide-1, beyond its insulin-stimulating effect, also has central pleiotropic influences. Research results with the application of these molecules seem to be enouraging. More recently, glucagon-like peptide-1, and glucose-dependent insulinotropic peptide were administered together, with promising early results. The real breakthrough has not yet arrived. For the time being we have to endeavour to the prevention of both chronic diseases via a more healthy life-style.
Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Biological Sciences, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, USA.
Dementia refers to an umbrella phenotype of many different underlying pathologies with Alzheimer's disease (AD) being the most common type. Neuropathological examination remains the gold standard for accurate AD diagnosis, however, most that we know about AD genetics is based on Genome-Wide Association Studies (GWAS) of clinically defined AD. Such studies have identified multiple AD susceptibility variants with a significant portion of the heritability unexplained and highlighting the phenotypic and genetic heterogeneity of the clinically defined entity.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada. Electronic address:
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
First Operating Room, The First Hospital of Jilin University, Changchun, China. Electronic address:
Background: Certain peripheral proteins are believed to be involved in the development of Alzheimer's disease (AD), but the roles of other new protein biomarkers are still unclear. Current treatments aim to manage symptoms, but they are not effective in stopping the progression of the disease. New drug targets are needed to prevent Alzheimer's disease.
View Article and Find Full Text PDFNeuroscience
January 2025
Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!