Degeneration of the distal axon and neuromuscular junction (NMJ) is considered a key and early feature of the pathology that accompanies motor neuron loss in people with amyotrophic lateral sclerosis (ALS). The mutant SOD1(G93A) mouse replicates many features of the disease, however the sequence of events resulting in degeneration of the neuromuscular circuitry remains unknown. Furthermore, despite widespread degenerative neuronal pathology throughout the spinal cord in this model, hindlimb motor function is lost before forelimb function. We investigated axons and NMJs in the hindlimb (gastrocnemius) and forelimb (extensor) muscles in the high copy number mutant SOD1(G93A)xYFP (yellow fluorescent protein) mouse. We found that distal axonal and NMJ alterations were present prior to previously reported functional symptom onset in this strain. Indeed, increased branch complexity as well as colocalisation between pre- and post-synaptic markers indicated widespread early axonal and NMJ alterations in the hindlimb. Immunohistochemical analysis demonstrated that the colocalisation of the scaffolding proteins nestin, LRP-4, dystrophin and rapsyn were diminished before post-synaptic receptors in the gastrocnemius, and the degree of loss differed between proteins. Analysis of the forelimb muscle revealed axonal and NMJ degeneration at a late, post symptomatic stage, as well as novel differences in NMJ morphology, with reduced complexity. Furthermore, post-synaptic scaffolding proteins were preserved in the forelimb compared with the hindlimb. Analysis of protein levels indicated an increase in LRP-4, dystrophin and rapsyn in post symptomatic skeletal muscle that may suggest ongoing attempts at repair. This study indicates that axonal and NMJ degeneration in the SOD1 model of ALS is a complex and evolving sequence of events. We provide evidence that YFP can detect morphological and plastic alterations in the SOD1(G93A) mouse, and that the pre- and post-synaptic integrity of the NMJ plays an important role in the pathogenic mechanisms of ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2016.03.003DOI Listing

Publication Analysis

Top Keywords

axonal nmj
16
sod1g93a mouse
12
degeneration distal
8
neuromuscular junction
8
symptom onset
8
amyotrophic lateral
8
lateral sclerosis
8
sequence events
8
nmj alterations
8
pre- post-synaptic
8

Similar Publications

Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.

View Article and Find Full Text PDF

The anillin knockdown in the Drosophila nervous system shows locomotor and learning defects.

Exp Cell Res

November 2024

Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan. Electronic address:

Anillin (Ani) is an evolutionarily conserved protein with a multi-domain structure that cross-links cytoskeletal proteins and plays an essential role in the formation of the contractile ring during cytokinesis. However, Ani is highly expressed in the human central nervous system (CNS), and it scaffolds myelin in the CNS of mice and modulates neuronal migration and growth in Caenorhabditis elegans. Although Ani is also highly expressed in the Drosophila CNS, its role remains unclear.

View Article and Find Full Text PDF

Two cardinal features of ALS, reduced STMN2 and pathogenic TDP-43, synergize to accelerate motor decline in mice.

Exp Neurol

February 2025

Department of Developmental Biology, Washington University School of Medicine, St. Louis 63110, United States; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis 63110, United States. Electronic address:

Pathological TDP-43 loss from the nucleus and cytoplasmic aggregation occurs in almost all cases of ALS and half of frontotemporal dementia patients. Stathmin2 (Stmn2) is a key target of TDP-43 regulation and aberrantly spliced Stmn2 mRNA is found in patients with ALS, frontotemporal dementia, and Alzheimer's Disease. STMN2 participates in the axon injury response and its depletion in vivo partially replicates ALS-like symptoms including progressive motor deficits and distal NMJ denervation.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs.

View Article and Find Full Text PDF

Tissue-specific knockout in the Drosophila neuromuscular system reveals ESCRT's role in formation of synapse-derived extracellular vesicles.

PLoS Genet

October 2024

Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.

Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions during development. However, this approach has not been successfully applied to most Drosophila tissues, including the Drosophila neuromuscular junction (NMJ). To expand tissue-specific CRISPR to this powerful model system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!